732
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge

, , , , , , , & show all
Pages 470-478 | Received 15 Mar 2014, Accepted 01 Aug 2014, Published online: 28 Aug 2014

References

  • He YD, Zhai YB, Li CT, Yang F, Chen L, Fan XP, Peng WF, Fu ZM. The fate of Cu, Zn, Pb and Cd during the pyrolysis of sewage sludge at different temperatures. Environ Technol. 2010;31:567–574. doi: 10.1080/09593330903514466
  • Menendez JA, Inguanzo M, Pis JJ. Microwave-induced pyrolysis of sewage sludge. Water Res. 2002;36:3261–3264. doi: 10.1016/S0043-1354(02)00017-9
  • Mohan D, Sarswat A, Ok YS, Pittman CU Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost ad sustainable adsorbent-a critical review. Bioresour Technol. 2014;160:191–202. doi: 10.1016/j.biortech.2014.01.120
  • Fonts I, Azuara M, Lázaro L, Gea G, Murillo MB. Gas chromatography study of sewage sludge pyrolysis liquids obtained at different operational conditions in a fluidized bed. Ind Eng Chem Res. 2009;48:5907–5915. doi: 10.1021/ie900421a
  • Fonts I, Kuoppala E, Oasmaa A. Physicochemical properties of product liquid from pyrolysis of sewage sludge. Energy Fuel. 2009;23:4121–4128. doi: 10.1021/ef900300n
  • Kersten SRA, Wang X, Prins W, Swaaij WPM. Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations. Ind Eng Chem Res. 2005;44:8773–8785. doi: 10.1021/ie0504856
  • Boateng AA, Daugaard DE, Goldberg NM, Hicks KB. Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production. Ind Eng Chem Res. 2007;46:1891–1897. doi: 10.1021/ie0614529
  • Sánchez ME, Menéndez JA, Domínguez A, Pis JJ, Martínez O, Calvo LF, Bernad PL. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenergy. 2009;33:933–940. doi: 10.1016/j.biombioe.2009.02.002
  • Kim Y, Parker W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour Technol. 2008;99:1409–1416. doi: 10.1016/j.biortech.2007.01.056
  • Moloodi S, Tzanetakis T, Nguyen B, Tehran MZ, Khan U. Fuel property effects on the combustion performance and emissions of hardwood-derived fast pyrolysis liquid-ethanol blends in a swirl burner. Energy Fuel. 2012;26:5452–5461. doi: 10.1021/ef300657d
  • Branca C, Di Blasi C, Elefante R. Devolatilization and heterogeneous combustion of wood fast pyrolysis oils. Ind Eng Chem Res. 2005;44:799–810. doi: 10.1021/ie049419e
  • Moloodi S. Experimental investigation of the effects of fuel properties on combustion performance and emissions of biomass fast pyrolysis liquid-ethanol blends in a swirl burner [M.A.Sc. thesis]. Toronto: Department of Mechanical and Industrial Engineering, University of Toronto; 2011.
  • Lehmann J, Skjemastad J, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury P, Krull AE. Australian climate-carbon cycle feedback reduced by soilblack carbon. Nature Geosci. 2008;1:832–835. doi: 10.1038/ngeo358
  • Mukome FND, Zhang XM, Silva LCR, Six J, Parikh SJ. Use of chemical and physical characteristics to investigate trends in biochar feedstocks. J Agric Food Chem. 2013;61:2196–2204. doi: 10.1021/jf3049142
  • Kim KH, Kim JY, Cho TS, Choi JW. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour Technol. 2012;118:158–162. doi: 10.1016/j.biortech.2012.04.094
  • Song WP, Guo MX. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis. 2012;94:138–145. doi: 10.1016/j.jaap.2011.11.018
  • Meng J, Wang LL, Liu XM, Wu JJ, Brookes PC, Xu JM. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as environmental amendment. Bioresour Technol. 2013;142:641–646. doi: 10.1016/j.biortech.2013.05.086
  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithange M, Lee SS, Ok YS. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33. doi: 10.1016/j.chemosphere.2013.10.071
  • Ábrego J, Arauzo J, Sánchez JL, Gonzalo A, Cordero T, Rodríguez-Mirasol J. Structural changes of sewage sludge char during fixed-bed pyrolysis. Ind Eng Chem Res. 2009;48:3211–3221. doi: 10.1021/ie801366t
  • Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E. Biochar production by sewage sludge pyrolysis. J Anal Appl Pyrolysis. 2013;101:72–78. doi: 10.1016/j.jaap.2013.02.010
  • Cao JP, Li LY, Morishita K, Xiao XB, Zhao XY, Wei XY. Nitrogen transformations during fast pyrolysis of sewage sludge. Fuel. 2013;104:1–6. doi: 10.1016/j.fuel.2010.08.015
  • Moreno-Castilla C, Ferro-García MA, Joly JP, Bautista-Toledo I, Carrasco-Marín F, Rivera-Utrilla J. Activated carbon surface modification by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir. 1995;11:4386–4392. doi: 10.1021/la00011a035
  • Chen JJ, Zhai YB, Chen HM, Li CT, Zeng GM, Pang DX, Lu P. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon. Appl Surf Sci. 2012;263:247–253. doi: 10.1016/j.apsusc.2012.09.038
  • Brunauer S, Emmet PH, Teller F. Surface area measurements of activated carbons, silica gel and other adsorbents. J Am Chem Soc. 1938;60:309–319. doi: 10.1021/ja01269a023
  • Barrett EP, Joyner LG, Halenda PP. The determination of pore volumes and area distribution in porous substances. J Am Chem Soc. 1951;73:373–380. doi: 10.1021/ja01145a126
  • Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energy Fuel. 2004;18:590–598. doi: 10.1021/ef034067u
  • Cao JP, Zhao XY, Morishita K, Wei XY, Takarada T. Fraction and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge. Bioresour Technol. 2010;101:7648–7652. doi: 10.1016/j.biortech.2010.04.073
  • Velden MVD, Baeyens J, Brems A, Janssens B, Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energ. 2010;35:232–242. doi: 10.1016/j.renene.2009.04.019
  • Demirbas A. Combustion characteristics of different biomass fuels. Prog Energ Combust. 2004;30:219–230. doi: 10.1016/j.pecs.2003.10.004
  • Chingombe P, Saha B, Wakeman RJ. Surface modification and characterization of a coal-based activated carbon. Carbon. 2005;43:3132–3143. doi: 10.1016/j.carbon.2005.06.021
  • Cao XD, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol. 2010;101:5222–5228. doi: 10.1016/j.biortech.2010.02.052
  • Radovic LR, Silva IF, Ume JI, Menendez JA, Leon Y, Leon CA, Scaroni AW. An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon. 1997;35:1339–1348. doi: 10.1016/S0008-6223(97)00072-9
  • Song XL, Liu HY, Cheng L, Qu YX. Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption. Desalination. 2010;255:78–83. doi: 10.1016/j.desal.2010.01.011
  • Méndez A, Gómez A, Paz-Ferreiro J, Gascó G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere. 2012;89:1354–1359. doi: 10.1016/j.chemosphere.2012.05.092
  • Brady NC, Weil RR. The nature and properties of soils. 13th ed. New York: Prentice Hall; 2002.
  • Rio S, Faur-brasquet C, Le Coq L, Le Cloirec P. Structure characterization and adsorption properties of pyrolyzed sewage sludge. Environ Sci Technol. 2005;39:4249–4257. doi: 10.1021/es0497532
  • Lu GQ, Low F, Liu CY, Lua AC. Surface area development of sewage sludge during pyrolysis. Fuel. 1995;74:344–348. doi: 10.1016/0016-2361(95)93465-P
  • Chen XG, Jeyaseelan S, Graham N. Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Manage. 2002;22:755–760. doi: 10.1016/S0956-053X(02)00057-0
  • Wen QB, Li CT, Cai ZH, Zhang W, Gao HL, Chen LJ. Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresour Technol. 2011;102:942–947. doi: 10.1016/j.biortech.2010.09.042
  • Liu MX, Luo GA, Zhang XR, Tong AJ. Instrumental analysis. 2nd ed. Beijing: Tsinghua University Press; 2002, p. 156–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.