447
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Disinfection of bore well water with chlorine dioxide/sodium hypochlorite and hydrodynamic cavitation

, , , &
Pages 479-486 | Received 20 May 2014, Accepted 01 Aug 2014, Published online: 28 Aug 2014

References

  • Nissinen TK, Miettinen IT, Martikainen PJ, Vartiainen T. Disinfection by-products in Finnish drinking waters. Chemosphere. 2002;48:9–20. doi: 10.1016/S0045-6535(02)00034-6
  • Hua GH, Reckhow DA. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Res. 2007;41:1667–1678. doi: 10.1016/j.watres.2007.01.032
  • Bond T, Goslan EH, Parsons SA, Jefferson B. Treatment of disinfection by-product precursors. Environ Technol. 2011;32:1–25. doi: 10.1080/09593330.2010.495138
  • USEPA. 2012 Edition of the Drinking Water Standards and Health Advisories. 2012; EPA/822/S/12/001. Office of Water, US. Environmental Protection Agency, Washington, DC, p. 2.
  • Mezule L, Tsyfansky S, Yakushevich V, Juhna T. A simple technique for water disinfection with hydrodynamic cavitation: effect on survival of Escherichia coli. Desalination. 2009;248:152–159. doi: 10.1016/j.desal.2008.05.051
  • Jyoti KK, Pandit AB. Ozone and cavitation for water disinfection. Biochem Eng J. 2004;18:9–19. doi: 10.1016/S1369-703X(03)00116-5
  • Gogate PR. Application of cavitational reactors for water disinfection: current status and path forward. J Environ Manage. 2007;85:801–815. doi: 10.1016/j.jenvman.2007.07.001
  • Gogate PR, Mededovic-Thagard S, McGuire D, Chapas G, Blackmon J, Cathey R. Hybrid reactor based on combined cavitation and ozonation: from concept to practical reality. Ultrason Sonochem. 2014;21(2):590–598. doi: 10.1016/j.ultsonch.2013.08.016
  • Gogate PR, Tayal RK, Pandit AB. Cavitation: a technology on the horizon. Curr Sci. 2006;91:35–46.
  • Gogate PR, Pandit AB. A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrason Sonochem. 2005;12:21–27. doi: 10.1016/j.ultsonch.2004.03.007
  • Joshi RK, Gogate PR. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies. Ultrason Sonochem. 2012;19:532–539. doi: 10.1016/j.ultsonch.2011.11.005
  • Patil PN, Gogate PR. Degradation of methyl parathion using hydrodynamic cavitation: effect of operating parameters and intensification using additives. Sep Purif Technol. 2012;95:172–179. doi: 10.1016/j.seppur.2012.04.019
  • Chahine GL. Cavitation dynamics at microscale level. J Heart Valve Dis. 1993;3:102–116.
  • Wu CC, Roberts PH. Shock-wave propagation in a sonoluminescing gas bubble. Phys Rev Lett. 1993;70:3424–3427. doi: 10.1103/PhysRevLett.70.3424
  • Aguilar O, Angeles C, Castillo CO, Martinez C, Rodriguez R, Ruiz RS, Vizcarra MG. On the ultrasonic degradation of Rhodamine B in water: kinetics and operational conditions effect. Environ Technol. 2014;35:1183–1189. doi: 10.1080/09593330.2013.864711
  • Gogate PR. Hydrodynamic cavitation for food and water processing. Food Bioprocess Tech. 2011;4:996–1011. doi: 10.1007/s11947-010-0418-1
  • Joyce E, Phull SS, Lorimer JP, Mason TJ. The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrason Sonochem. 2003;10:315–318. doi: 10.1016/S1350-4177(03)00101-9
  • Chakinala AG, Bremner DH, Gogate PR, Namkung KC, Burgess AE. Multivariate analysis of phenol mineralisation by combined hydrodynamic cavitation and heterogeneous advanced Fenton processing. Appl Catal B: Environ. 2008;78:11–18. doi: 10.1016/j.apcatb.2007.08.012
  • Chakinala AG, Gogate PR, Chand R, Bremner DH, Molina R, Burgess AE. Intensification of oxidation capacity using chloroalkanes as additives in hydrodynamic and acoustic cavitation reactors. Ultrason Sonochem. 2008;15:164–170. doi: 10.1016/j.ultsonch.2007.02.008
  • Arrojo S, Benito Y, Tarifa AM. A parametrical study of disinfection with hydrodynamic cavitation. Ultrason Sonochem. 2008;15(5):903–908. doi: 10.1016/j.ultsonch.2007.11.001
  • Balasundaram B, Harrison S. Study of physical and biological factors involved in the disruption of E. coli by hydrodynamic cavitation. Biotechnol Progr. 2006;22:907–913. doi: 10.1021/bp0502173
  • Jyoti KK, Pandit AB. Hybrid cavitation methods for water disinfection: simultaneous use of chemicals with cavitation. Ultrason Sonochem. 2003;10:255–264. doi: 10.1016/S1350-4177(03)00095-6
  • Jyoti KK, Pandit AB. Effect of cavitation on chemical disinfection efficiency. Water Res. 2004;38:2249–2258. doi: 10.1016/j.watres.2004.02.012
  • Maslak D, Weuster-Botz D. Combination of hydrodynamic cavitation and chlorine dioxide for disinfection of water. Eng Life Sci. 2011;11:350–358. doi: 10.1002/elsc.201000103
  • Chand R, Bremner DH, Namkung KC, Collier PJ, Gogate PR. Water disinfection using the novel approach of ozone and a liquid whistle reactor. Biochem Eng J. 2007;35:357–364. doi: 10.1016/j.bej.2007.01.032
  • Duckhouse H, Mason TJ, Phull SS, Lorimer JP. The effect of sonication on microbial disinfection using hypochlorite. Ultrason Sonochem. 2004;11:173–176. doi: 10.1016/j.ultsonch.2004.01.031
  • American Public Health Association. Standard methods for the analysis of water and wastewater. Washington, DC: American Public Health Association; 1985.
  • Jyoti KK, Pandit AB. Water disinfection by acoustic and hydrodynamic cavitation. Biochem Eng J. 2001;7:201–212. doi: 10.1016/S1369-703X(00)00128-5
  • Sharma A, Gogate PR, Mahulkar A, Pandit AB. Modeling of hydrodynamic cavitation reactors based on orifice plates considering hydrodynamics and chemical reactions occurring in bubble. Chem Eng J. 2008;143:201–209. doi: 10.1016/j.cej.2008.04.005
  • Gogate PR, Pandit AB. Engineering design methods for cavitation reactors II: hydrodynamic cavitation. Aiche J. 2000;46:1641–1649. doi: 10.1002/aic.690460815
  • Amin LP, Gogate PR, Burgess AE, Bremner DH. Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chem Eng J. 2010;156:165–169. doi: 10.1016/j.cej.2009.09.043
  • Sivakumar M, Pandit AB. Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrason Sonochem. 2002;9:123–131. doi: 10.1016/S1350-4177(01)00122-5
  • Ambulgekar GV, Samant SD, Pandit AB. Oxidation of alkylarenes to the corresponding acids using aqueous potassium permanganate by hydrodynamic cavitation. Ultrason Sonochem. 2004;11:191–196. doi: 10.1016/j.ultsonch.2004.01.027
  • Vichare NP, Gogate PR, Pandit AB. Optimization of hydrodynamic cavitation using a model reaction. Chem Eng Technol. 2000;23:683–690. doi: 10.1002/1521-4125(200008)23:8<683::AID-CEAT683>3.0.CO;2-9
  • Blume T, Neis U. Improving chlorine disinfection of wastewater by ultrasound application. Water Sci Technol. 2005;52:139–144.
  • Braeutigam P, Franke M, Wu ZL, Ondruschka B. Role of different parameters in the optimization of hydrodynamic cavitation. Chem Eng Technol. 2010;33:932–940. doi: 10.1002/ceat.200900434
  • Mishra KP, Gogate PR. Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives. Sep Purif Technol. 2010;75:385–391. doi: 10.1016/j.seppur.2010.09.008
  • Wu CD, Liu XH, Fan JC, Wang LS. Ultrasonic destruction of chloroform and carbon tetrachloride in aqueous solution. J Environ Sci Heal A. 2001;36:947–955. doi: 10.1081/ESE-100104123

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.