328
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Pretreatment of poultry manure anaerobic-digested effluents by electrolysis, centrifugation and autoclaving process for Chlorella vulgaris growth and pollutants removal

, , , , , & show all
Pages 837-843 | Received 26 Mar 2014, Accepted 04 Sep 2014, Published online: 09 Oct 2014

References

  • Park J, Jin HF, Lim BR, Park KY, Lee K. Ammonia removal from anaerobic effluent of livestock waste using green alga Scendesmus sp. Bioresour Technol. 2010;101:8649–8657. doi: 10.1016/j.biortech.2010.06.142
  • Li X, Hu HY, Gan K, Sun YX. Effects of different nitrogen and phosphorous concentrations on the growth, nitrogen uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 2010;101:5494–5500. doi: 10.1016/j.biortech.2010.02.016
  • Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Technol. 2011;102:10–16. doi: 10.1016/j.biortech.2010.06.032
  • Singh A, Nigam PS, Murphy JD. Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol. 2011;102:26–34. doi: 10.1016/j.biortech.2010.06.057
  • Kumar MS, Miao ZH, Wyatt SK. Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresour Technol. 2010;101:6012–6018. doi: 10.1016/j.biortech.2010.02.080
  • Wang L, Li YC, Chen Y, Min M, Chen YF, Zhu J, Ruan R. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol. 2010;101:2623–2628. doi: 10.1016/j.biortech.2009.10.062
  • Singh M, Reynolds DL, Das KC. Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour Technol. 2011;102:10841–10848. doi: 10.1016/j.biortech.2011.09.037
  • Åkerström AM, Mortensen LM, Rusten B, Gislerød HR. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration. J Environ Manage. 2014;144:118–124.
  • Nakhla GK, Suidan MT. Anaerobic toxic wastewater treatment: dilution effects. J Hazard Mater. 1995;42:71–86. doi: 10.1016/0304-3894(95)00007-H
  • Chen YB, Dong RJ, Peng GJ, Huo SH, Liu YP, Pang CL. Cultivation of Chlorella sp. in anaerobic effluent for biomass production. Environ Eng Manage J. 2011;10:909–912.
  • Israilides CJ, Vlyssides AG, Mourafeti VN, Karvouni G. Olive oil wastewater treatment with the use of an electrolysis system. Bioresour Technol. 1997;61:163–170. doi: 10.1016/S0960-8524(97)00023-0
  • Cho JH, Lee JE, Ra CS. Effects of electric voltage and sodium chloride level on electrolysis of swine wastewater. J Hazard Mater. 2010;180:535–541. doi: 10.1016/j.jhazmat.2010.04.067
  • Ihara I, Umetsu K, Kanamura K, Watanabe T. Electrochemical oxidation of the effluent from anaerobic digestion of dairy manure. Bioresour Technol. 2006;97:1360–1364. doi: 10.1016/j.biortech.2005.07.007
  • Lei XH, Maekawa T. Electrochemical treatment of anaerobic digestion effluent using a Ti/Pt-IrO2 electrode. Bioresour Technol. 2007;98:3521–3525. doi: 10.1016/j.biortech.2006.11.018
  • Chiang LC, Chang JE, Wen TC. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Res. 1995;29:671–678. doi: 10.1016/0043-1354(94)00146-X
  • Konig A, Pearson HW, Silva SA. Ammonia toxicity to algal growth in waste stabilization ponds. Wat Sci Technol. 1987;19:115–122.
  • Feng C, Sugiura N, Shimada S, Maekawa T. Development of high performance electrochemical wastewater treatment system. J Hazard Mater. 2003;103:65–78. doi: 10.1016/S0304-3894(03)00222-X
  • Kapałka A, Cally A, Neodo S, Comninellis C, Wächter M, Udert KM. Electrochemical behavior of ammonia at Ni/Ni(OH)2 electrode. Electrochem Commun. 2010;12:18–21. doi: 10.1016/j.elecom.2009.10.026
  • Li L, Liu Y. Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics. J Hazard Mater. 2009;161:1010–1016. doi: 10.1016/j.jhazmat.2008.04.047
  • Feng C, Suzuki K, Zhao S, Sugiura N, Shimada S, Maekawa T. Water disinfection by electrochemical treatment. Bioresour Technol. 2004;94:21–25. doi: 10.1016/j.biortech.2003.11.021
  • Bektaş N, Akbulut H, Inan H, Dimoglo A. Removal of phosphate from aqueous solutions by electro-coagulation. J Hazard Mater. 2004;106B:101–105. doi: 10.1016/j.jhazmat.2003.10.002
  • Şahset İ, Yalçın ŞY, Vahdettin T. Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes. Sep Purif Technol. 2006;52:394–401. doi: 10.1016/j.seppur.2006.05.020
  • Ketkar DR, Mallikajunan R, Venkatachalam S. Electroflotation of quartz fines. Int J Miner Process. 1991;31:127–138. doi: 10.1016/0301-7516(91)90009-8
  • Cañizares P, Beteta A, Sáez C, Rodríguez L, Rodrigo MA. Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied. Chemosphere. 2008;72:1080–1085. doi: 10.1016/j.chemosphere.2008.04.004
  • Shen Y, Yuan W, Pei Z, Mao E. Culture of microalgae Botryococcus in livestock wastewater. Trans ASABE. 2008;51:1395–1400. doi: 10.13031/2013.25223
  • Kim BR, Anderson JE, Mueller SA, Gaines WA, Kendall AM. Literature review–efficacy of various disinfectants against Legionella in water systems. Water Res. 2002; 36:4433–4444. doi: 10.1016/S0043-1354(02)00188-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.