416
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Development of poly(aspartic acid-co-malic acid) composites for calcium carbonate and sulphate scale inhibition

, , , &
Pages 1281-1290 | Received 11 Jun 2014, Accepted 13 Oct 2014, Published online: 09 Dec 2014

References

  • Euvrard M, Martinod A, Neville A. Effects of carboxylic polyelectrolytes on the growth of calcium carbonate. J Crystal Growth. 2011;317:70–78. doi: 10.1016/j.jcrysgro.2011.01.006
  • Hasson D, Shemer H, Sher A. State of the art of friendly ‘green’ scale control inhibitors: a review article. Indus Eng Chem Res. 2011;50:7601–7607. doi: 10.1021/ie200370v
  • Thombre SM, Sarwade BD. Synthesis and biodegradability of polyaspartic acid: a critical review. J Macromol Sci A. 2005;42:1299–1315. doi: 10.1080/10601320500189604
  • Koskan LP, Low KC. Polyaspartic acid as a calcium sulfate and a barium sulfate inhibitor. Google Patents; 1992.
  • Shogren RL, Willett J, Westmoreland D, Gonzalez SO, Doll KM, Swift G. Properties of copolymers of aspartic acid and aliphatic dicarboxylic acids prepared by reactive extrusion. J Appl Polym Sci. 2008;110:3348–3354. doi: 10.1002/app.28944
  • Cheng J, Deming T. Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. In: Deming T, editor. Peptide-based materials. Topics in current chemistry, No. 310. Berlin, Heidelberg: Springer; 2012. p. 1–26.
  • Ouchi T, Fujino A. Synthesis of poly(α-malic acid) and its hydrolysis behavior in vitro. Die Makromol Chem. 1989;190:1523–1530. doi: 10.1002/macp.1989.021900703
  • Guerin P, Vert M, Braud C, Lenz R. Optically active poly(malic-acid). Polym Bull. 1985;14:187–192. doi: 10.1007/BF00708479
  • Cammas-Marion S, Béar M-M, Harada A, Guérin P, Kataoka K. New macromolecular micelles based on degradable amphiphilic block copolymers of malic acid and malic acid ester. Macromol Chem Phys. 2000;201:355–364. doi: 10.1002/(SICI)1521-3935(20000201)201:3<355::AID-MACP355>3.0.CO;2-9
  • Cammas S, Béar M-M, Moine L, Escalup R, Ponchel G, Kataoka K, Guérin P. Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices. Int J Biol Macromol. 1999;25:273–282. doi: 10.1016/S0141-8130(99)00042-2
  • Cammas S, Renard I, Langlois V, Guerin P. Poly(β-malic acid): obtaining high molecular weights by improvement of the synthesis route. Polymer. 1996;37:4215–4220. doi: 10.1016/0032-3861(96)00204-2
  • Gao Y, Liu Z, Zhang L, Wang Y. Synthesis, characterization and scale inhibition of biodegradable polyaspartic acid derivative. 3rd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2009; 2009 Jun 11–13; Beijing; 2009.
  • Low Kim C, Wheeler AP, Koskan Larry Po. Commercial poly(aspartic acid) and its uses. Adv Chem. 1996;248:99–111.
  • Bennett GD. A green polymerization of aspartic acid for the undergraduate organic laboratory. J Chem Educ. 2005;82:1380–1381. doi: 10.1021/ed082p1380
  • Joentgen W, Müller N, Mitschker A, Schmidt H. Polyaspartic acids. In: Fahnestock S, Steinbüchel A, editors. Polyamides and complex proteinaceous materials: I. biopolymers. Vol. 7. Weinheim: Wiley-VCH Verlag GmbH; 2004. p. 175–179.
  • Roweton S, Huang S, Swift G. Poly (aspartic acid): synthesis, biodegradation, and current applications. J Environ Polym Degrad. 1997;5:175–181.
  • Xu Y, Wang L, Zhao L, Cui Y. Synthesis of polyaspartic acid–aminobenzenesulfonic acid grafted copolymer and its scale inhibition performance and dispersion capacity. Water Sci Technol. 2011;64:423–430. doi: 10.2166/wst.2011.526
  • Liu Z, Sun Y, Zhou X, Wu T, Tian Y, Wang Y. Synthesis and scale inhibitor performance of polyaspartic acid. J Environ Sci. 2011;23:S153–S155. doi: 10.1016/S1001-0742(11)61100-5
  • Wu L, Jin X, Mingzhu X, Wen-Yu S, Feng-Yun W. Synthesis of polyaspartic acid. Chin J Appl Chem. 2003;20:397–399.
  • Ming P, Yaquan W, Tengfei L, Yongjiang H. Scale inhibiting abilities of poly (aspartic acid) and the combinations of phosphorus-containing inhibitors. Indus Water Treat. 2003;6:21–22.
  • Kumar NM, Gupta SK, Varaprasad K, Kanny K, Bux F. Development of anti-scale poly(aspartic acid–citric acid) dual polymer systems for water treatment. Environ Technol. 2014;35:2903–2909. doi: 10.1080/09593330.2014.889760
  • Xu Y, Zhang B, Zhao L, Cui Y. Synthesis of polyaspartic acid/5-aminoorotic acid graft copolymer and evaluation of its scale inhibition and corrosion inhibition performance. Desalination. 2013;311:156–161. doi: 10.1016/j.desal.2012.11.026
  • Zhang Y, Huang J, Cheng Z, Yang S. Microwave-assisted synthesis of modified polyaspartic acid in solvent. Chin J Chem Eng. 2007;15:458–462. doi: 10.1016/S1004-9541(07)60108-6
  • Camargo ER, Popa M, Kakihana M. Sodium niobate (NaNbO3) powders synthesized by a wet-chemical method using a water-soluble malic acid complex. Chem Mater. 2002;14:2365–2368. doi: 10.1021/cm011696d
  • Camargo ER, Longo E, Leite ER, Kakihana M. Qualitative measurement of residual carbon in wet-chemically synthesized powders. Ceramics Int. 2004;30:2235–2239. doi: 10.1016/j.ceramint.2004.02.003
  • Kumar NM, Kanny K. A novel biodegradable poly (hydroxybutanedioic acid-co-2-hydroxypropane-1,2, 3-tricarboxylic acid) copolymer for water treatment applications. Open J Org Polym Mater. 2013;3:53–58. doi: 10.4236/ojopm.2013.32009
  • Kırboga S, Öner M. The inhibitory effects of carboxymethyl inulin on the seeded growth of calcium carbonate. Colloids Surf B Biointerfaces. 2012;91:18–25. doi: 10.1016/j.colsurfb.2011.10.031
  • Swift G, Westmoreland DG, Willett JL, Shogren RL, Doll KM. Methods of synthesis of polymers and copolymers from natural products. Google Patents; 2007.
  • Wang L, Neoh K-G, Kang E-T, Shuter B, Wang S-C. Biodegradable magnetic-fluorescent magnetite/poly (dl-lactic acid-co-α, β-malic acid) composite nanoparticles for stem cell labeling. Biomaterials. 2010;31:3502–3511. doi: 10.1016/j.biomaterials.2010.01.081
  • Kumar NM, Varaprasad K, Reddy GR, Reddy GSM, Sivabharathi Y, Reddy GVS, Naidu SV. Biodegradable water soluble copolymer for antimicrobial applications. J Polym Environ. 2011;19:225–229. doi: 10.1007/s10924-010-0265-1
  • Kumar NM, Varaprasad K, Rao KM, Babu AS, Srinivasulu M, Naidu SV. A novel biodegradable green poly (l-aspartic acid–citric acid) copolymer for antimicrobial applications. J Polym Environ. 2012;20:17–22. doi: 10.1007/s10924-011-0335-z
  • Pounder RJ, Fox DJ, Barker IA, Bennison MJ, Dove AP. Ring-opening polymerization of an O-carboxyanhydride monomer derived from l-malic acid. Polym Chem. 2011;2:2204–2212. doi: 10.1039/c1py00254f
  • He B, Poon YF, Feng J, Chan-Park MB. Synthesis and characterization of functionalized biodegradable poly(DL-lactide-co-RS-β-malic acid). J Biomed Mater Res A. 2008;87A:254–263. doi: 10.1002/jbm.a.31793
  • Rodrigues CSD, Madeira LM, Boaventura RAR. Treatment of textile dye wastewaters using ferrous sulphate in a chemical coagulation/flocculation process. Environ Technol. 2013;34:719–729. doi: 10.1080/09593330.2012.715679
  • Rodrigues LA, Maschio LJ, Coppio LSC, Thim GP, Silva MLCP. Adsorption of phosphate from aqueous solution by hydrous zirconium oxide. Environ Technol. 2012;33:1345–1351. doi: 10.1080/09593330.2011.632651
  • Alemu S, Mulugeta E, Zewge F, Chandravanshi BS. Water defluoridation by aluminium oxide–manganese oxide composite material. Environ Technol. 2014;35:1893–1903. doi: 10.1080/09593330.2014.885584
  • An JS, Back YJ, Kim KC, Cha R, Jeong TY, Chung HK. Optimization for the removal of orthophosphate from aqueous solution by chemical precipitation usingferrous chloride. Environ Technol. 2014;35:1668–1675. doi: 10.1080/09593330.2013.879495
  • Lioliou MG, Paraskeva CA, Koutsoukos PG, Payatakes AC. Calcium sulfate precipitation in the presence of water-soluble polymers. J Colloid Interface Sci. 2006;303:164–170. doi: 10.1016/j.jcis.2006.07.054
  • Loy JE, Guo J, Severtson SJ. Role of adsorption fractionation in determining the CaCO3 scale inhibition performance of polydisperse sodium polyacrylate. Indus Eng Chem Res. 2004;43:1882–1887. doi: 10.1021/ie034078a
  • Weijnen MPC, van Rosmalen GM. The influence of various polyelectrolytes on the precipitation of gypsum. Desalination. 1985;54:239–261. doi: 10.1016/0011-9164(85)80021-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.