490
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Biological surface-active compounds from marine bacteria

, &
Pages 1151-1158 | Received 08 Jul 2015, Accepted 01 Oct 2015, Published online: 02 Nov 2015

References

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R. Biosurfactants: potential applications in medicine. J Antimicrob Chemother. 2006;57:609–618. doi: 10.1093/jac/dkl024
  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr Sci. 2008;94:736–747.
  • Pattanathu KSM, Gakpe E. Production, characterization and applications of biosurfactants-review. Biotechnology. 2008;7:360–370. doi: 10.3923/biotech.2008.360.370
  • Paramaporn C, Phonnok S, Durand A, Marie E, Thanomsub BW. Bioproduction and anticancer activity of biosurfactant produced by the dematiaceous fungus Exophiala dermatitidis SK80. J Microbiol Biotechnol. 2010;20:1664–1671.
  • Kosaric N. Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol. 2001;39:295–304.
  • Mulligan CN. Environmental applications for biosurfactants. Environ Pollut. 2005;133:183–198. doi: 10.1016/j.envpol.2004.06.009
  • Damasceno FRC, Freire DMG, Cammarota MC. Assessing a mixture of biosufactant and enzyme pools in the anaerobic biological treatment of wastewater with high-fat content. Environ Technol. 2014;35:2035–2045. doi: 10.1080/09593330.2014.890249
  • Cheng KY, Zhao ZY, Wong JWC. Solubilization and desorption of PAHs in soil aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition. Environ Technol. 2004;25:1159–1165. doi: 10.1080/09593332508618382
  • Whyte LG, Slagman SJ, Pietrantonio F, Bourbonnière L, Koval SF, Lawrence JR, Inniss WE, Greer CW. Physiological adaptations involved in alkane assimilation at low temperatures by Rhodococcus sp. strain Q15. Appl Environ Microbiol. 1999;65:2961–2968.
  • Yakimov MM, Giuliano L, Bruni V, Scarfi S, Golyshin PN. Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol. 1999;22:249–259.
  • Bushnell LD, Haas HF. The utilization of certain hydrocarbons by microorganisms. J Bacteriol. 1941;41:653–673.
  • Chen CY, Baker SC, Darton RC. The application of a high throughput analysis method for screening of potential biosurfactants from natural sources. J Microbiol Methods. 2007;70:503–510. doi: 10.1016/j.mimet.2007.06.006
  • Walter V, Syldatk C, Hausmann R. Biosurfactants. New York: Springer; 2010. Chapter 1, Screening concepts for the isolation of biosurfactant producing microorganisms; p. 1–13.
  • Batista S, Mounteer A, Amorim F, Tótolaa MR. Isolation and characterization of biosurfactant/bioemulsifier producing bacteria from petroleum contaminated sites. Bioresour Technol. 2006;97:868–875. doi: 10.1016/j.biortech.2005.04.020
  • Tadros T. Applied surfactants: principle and applications. Weinheim: Wiley VCH; 2005. Adsorption of surfactants at the air/liquid and liquid/liquid interface; p. 81–82.
  • Kuyukina MS, Ivshina IB, Philip JC, Christofi N, Dunbar SAE, Ritchkova MI. Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods. 2001;46:149–156. doi: 10.1016/S0167-7012(01)00259-7
  • Zhang C. Fundamentals of environmental sampling and analysis. Hoboken, NJ: Wiley; 2007. Chapter 6, Common operations and wet chemical methods in environmental laboratories; p. 148–149.
  • Olivera NL, Commendatore MG, Delgado O, Esteves JL. Microbial characterization and hydrocarbon biodegradation potential of natural bilge waste microflora. J Ind Microbiol Biotechnol. 2003;30:542–548. doi: 10.1007/s10295-003-0078-5
  • Willumsen PAE, Karlson U. Screening of bacteria, isolated from PAH-contaminated soils for production of biosurfactants and bioemulsifiers. Biodegradation. 1997;7:415–423. doi: 10.1007/BF00056425
  • Sapute SK, Bhawsar BD, Dhakephalkar PK, Chopade BA. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Marine Sci. 2008;37:243–250.
  • Yakimov MM, Gentile G, Bruni V, Cappello S, D'Auria G, Golyshin PN, Giuliano L. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol Ecol. 2009;49:419–432. doi: 10.1016/j.femsec.2004.04.018
  • Gerdes B, Brinkmeyer R, Dieckmenn G, Helmke E. Influence of crude oil on changes of bacterial communities in Arctic sea-ice. FEMS Microbiology Ecology. 2005;53:129–139. doi: 10.1016/j.femsec.2004.11.010
  • Brakstad OG, Bonaunet K. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0–5°C) and bacterial communities associated with degradation. Biodegradation. 2006;7:71–82. doi: 10.1007/s10532-005-3342-8
  • Margesin R. Alpine microorganisms: useful tools for low-temperature bioremediation. J Microbiol. 2007;45:281–285.
  • Grossman M, Prince R, Garret R, Garrett K, Bare R, Lee K, Sergy G, Owens E, Guénette C. Microbial diversity in oiled and unoiled shoreline sediments in the Norwegian Arctic. In: Bell CR, Brylinsky M, Johnson-Green P, editors. The 8th international symposium on microbial ecology. Proceedings; 1998 Aug 9–14; Halifax, NS (Canada).
  • Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an Arctic microbial consortium. Extremophiles. 2005;9:461–470. doi: 10.1007/s00792-005-0463-2
  • Brakstad OG, Nonstad I, Faksness LG, Brandvik PJ. Responses of microbial communities in Arctic sea ice after contamination by crude petroleum oil. Microb Ecol. 2008;55:540–552. doi: 10.1007/s00248-007-9299-x
  • Røberg S, Østerhus JI, Landfald B. Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol. 2011;34:1455–1465. doi: 10.1007/s00300-011-1003-4
  • Déziel E, Lépine F, Milot S, Villemur R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology. 2003;149:2005–2013. doi: 10.1099/mic.0.26154-0
  • Benincasa M, Abalos A, Oliveira I, Manresa A. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soap stock. Antonie van Leeuwenhoek. 2004;85:1–8. doi: 10.1023/B:ANTO.0000020148.45523.41
  • Neu TR, Haertner T, Poralla K. Surface active properties of viscosin: a peptidolipid antibiotic. Appl Microbiol Biotechnol. 1990;32:518–520.
  • Pedras MSC, Ismail N, Quail JW, Boyetchko SM. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Photochemistry. 2003;62:1105–1114. doi: 10.1016/S0031-9422(02)00617-9
  • Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol. 2004;51:97–113. doi: 10.1046/j.1365-2958.2003.03751.x
  • Anu-Appaiah KA, Karanth NGK. Insecticide specific emulsifier production by hexachlorocyclohexane utilizing Pseudomonas tralucida Ptm strain. Biotechnol Lett. 1991;13:371–374. doi: 10.1007/BF01027685
  • Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M. Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol. 2005;98:456–463. doi: 10.1111/j.1365-2672.2004.02480.x
  • Uchida Y, Tsuchiya R, Chino M, Hirano J, Tabuchi T. Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric Biol Chem. 1989;53:757–763. doi: 10.1271/bbb1961.53.757
  • Lang S, Philp CJ. Surface active lipids in Rhodococci. Antonie van Leeuwenhoek. 1998;74:59–70. doi: 10.1023/A:1001799711799
  • Peng F, Liu Z, Wang L, Shao Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol. 2007;102:1603–1611. doi: 10.1111/j.1365-2672.2006.03267.x
  • Rougeaux H, Quezennec J, Carlson RW, Kervarec N, Pichon R, Talaga P. Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr Res. 1999;315:273–285. doi: 10.1016/S0008-6215(99)00019-1
  • Mancuso-Nichols C, Garon S, Bowman JP, Raguénès G, Guézennec J. Production of exopolysaccharides by Antarctic marine bacterial isolates. J Appl Microbiol. 2004;96:1057–1066. doi: 10.1111/j.1365-2672.2004.02216.x
  • Mancuso-Nichols C, Bowman JP, Guezennec J. Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic sea ice bacterium grown in batch culture. Appl Environ Microbiol. 2005;71:3519–3523. doi: 10.1128/AEM.71.7.3519-3523.2005
  • Gutiérrez T, Shimmield T, Haidon C. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. strain TG12. Appl Environ Microbiol. 2008;74:4867–4876. doi: 10.1128/AEM.00316-08
  • Matsuyama H, Hirabayashi T, Kasahara H, Minami H, Hoshino T, Yumoto I. Glaciecola chathamensis sp. nov., a novel marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol. 2006;56:2883–2886. doi: 10.1099/ijs.0.64413-0
  • Fiebig R, Schulze D, Chung JC, Lee ST. Biodegradation of biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation. 1997;8:67–75. doi: 10.1023/A:1008256110136
  • Cameotra SS, Makkar RS. Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol. 1998;50:520–529. doi: 10.1007/s002530051329
  • Kim JS, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V. Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol. 1990;13:257–266. doi: 10.1016/0168-1656(90)90074-L
  • Kitamoto D, Fuzishiro T, Yanagishita H, Nakane T, Nakahara T. Production of mannosylerythritol lipids as biosurfactants by resting cells of Candida Antarctic. Biotechnol Lett. 1992;14:305–310. doi: 10.1007/BF01022329

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.