271
Views
14
CrossRef citations to date
0
Altmetric
Articles

Size effects of potato waste on its treatment by microbial fuel cell

&
Pages 1305-1313 | Received 13 May 2015, Accepted 23 Oct 2015, Published online: 15 Dec 2015

References

  • Justin Cook C. Potatoes, milk, and the old world population boom. J Dev Econ. 2014;110:123–138. doi: 10.1016/j.jdeveco.2014.04.009
  • Cangialosi F, Intini G, Liberti L, Notarnicola M, Stellacci P. Health risk assessment of air emissions from a municipal solid waste incineration plant-A case study. Waste Manage. 2008;28:885–895. doi: 10.1016/j.wasman.2007.05.006
  • Logan BE, Hamelers B, Rozendal RA, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40:5181–5192. doi: 10.1021/es0605016
  • Virdis B, Rabaey K, Rozendal RA, Yuan ZG, Keller J. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res. 2010;44:2970–2980. doi: 10.1016/j.watres.2010.02.022
  • Venkata Mohan S, Mohanakrishna G, Sarma PN. Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresour Technol. 2010;101:970–976. doi: 10.1016/j.biortech.2009.09.005
  • Jiang JQ, Zhao QL, Zhang JN, Zhang GD, Lee DJ. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell. Bioresour Technol. 2009;100:5808–5812. doi: 10.1016/j.biortech.2009.06.076
  • Goud RK, Babu PS, Venkata Mohan S. Canteen based composite food waste as potential anodic fuel for bioelectricity generation in single chambered microbial fuel cell (MFC): bio-electrochemical evaluation under increasing substrate loading condition. Int J Hydrogen Energy. 2011;36:6210–6218. doi: 10.1016/j.ijhydene.2011.02.056
  • Zhao G, Ma F, Li W, Chua H, Chang CC, Zhang XJ. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Manage. 2012;32:1651–1658. doi: 10.1016/j.wasman.2012.04.013
  • Vilajeliu-Pons A, Puig S, Pous N, et al. Microbiome characterization of MFCs used for the treatment of swine manure. J Hazard Mater. 2015;288:60–68. doi: 10.1016/j.jhazmat.2015.02.014
  • Logrono W, Ramirez G, Recalde C, Echeverria M, Cunachi A. Bioelectricity generation from vegetables and fruits wastes by using single chamber microbial fuel cells with high Andean soils. Energy Procedia. 2015;75:2009–2014. doi: 10.1016/j.egypro.2015.07.259
  • Durruty I, Bonanni PS, Gonzalez JF, Busalmen JP. Evaluation of potato-processing wastewater treatment in a microbial fuel cell. Bioresour Technol. 2012;105:81–87. doi: 10.1016/j.biortech.2011.11.095
  • Li Z, Haynes R, Sato E, Shields MS, Fujita Y, Sato C. Microbial community analysis of a single chamber microbial fuel cell using potato wastewater. Water Environ Res. 2014;86:324–330. doi: 10.2175/106143013X13751480308641
  • Du HX, Li FS, Huang K, Li WH, Feng CH. Potato waste treatment by microbial fuel cell: evaluation based on electricity generation, organic matter removal and microbial structure. Environ Protect Eng. 2015 ( in press).
  • Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol. 2003;69:1548–1555. doi: 10.1128/AEM.69.3.1548-1555.2003
  • Pham CA, Jung SJ, Phung NT, et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett. 2003;223:129–134. doi: 10.1016/S0378-1097(03)00354-9
  • Nandi R, Sengupta S. Microbial production of hydrogen: an overview. Crit Rev Microbiol. 1998;24:61–84. doi: 10.1080/10408419891294181
  • Feng CH, Ma L, Li FB, Mai HJ, Lang XM, Fan SS. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens Bioelectron. 2010;25:1516–1520. doi: 10.1016/j.bios.2009.10.009
  • Hirooka K, Ichihashi O. Phosphorus recovery from artificial wastewater by microbial fuel cell and its effect on power generation. Bioresour Technol. 2013;137:368–375. doi: 10.1016/j.biortech.2013.03.067
  • Zhao XQ, Yang LY, Yu ZY, et al. Characterization of depth-related microbial communities in lake sediment by denaturing gradient gel electrophoresis of amplified 16S rRNA fragments. J Environ Sci. 2008;20:224–230. doi: 10.1016/S1001-0742(08)60035-2
  • Huang K, Li FS, Wei YF, Chen XM, Fu XY. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida. Bioresour Technol. 2013;150:235–241. doi: 10.1016/j.biortech.2013.10.006
  • Du ZW, Li HR, Gu TY. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv. 2007;25:464–482. doi: 10.1016/j.biotechadv.2007.05.004
  • Goud RK, Venkata Mohan S. Pre-fermentation of waste as a strategy to enhance the performance of single chambered microbial fuel cell (MFC). Int J Hydrogen Energy. 2011;36:13753–13762. doi: 10.1016/j.ijhydene.2011.07.128
  • Logan BE, Cheng SA, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol. 2007;41:3341–3346. doi: 10.1021/es062644y
  • Srikanth S, Venkata Mohan S, Sarma PN. Positive anodic poised potential regulates microbial fuel cell performance with the function of open and closed circuitry. Bioresour Technol. 2010;101:5337–5344. doi: 10.1016/j.biortech.2010.02.028
  • Feng Y, Wang X, Logan BE, Lee H. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biot. 2008;78:873–880. doi: 10.1007/s00253-008-1360-2
  • Laties GG. The inhibition of citrate, isocitrate and α-ketoglutarate oxidation in aged potato slices by γ hydroxyl α-ketoglutarate. Phytochemistry. 1967;6:181–185. doi: 10.1016/S0031-9422(00)82761-2
  • Liu R, Gao CY, Zhao YG, et al. Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cells. Bioresour Technol. 2012;123:86–91. doi: 10.1016/j.biortech.2012.07.094
  • Shipman JA, Cho KH, Siegel HA, Salyers AA. Physiological characterization of susG, an outer membrane protein essential for starch utilization by bacteroides thetaiotaomicron. J Bacteriol. 1999;181:7206–7211.
  • Lu L, Xing DF, Ren NQ, Logan BE. Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour Technol. 2012;124:68–76. doi: 10.1016/j.biortech.2012.08.040
  • Lors C, Damidot D, Ponge J, Perie F. Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut. 2012;165:11–17. doi: 10.1016/j.envpol.2012.02.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.