388
Views
6
CrossRef citations to date
0
Altmetric
Articles

Ibuprofen removal in horizontal subsurface flow constructed wetlands: treatment performance and fungal community dynamicsFootnote

, , , , , & show all
Pages 1467-1479 | Received 10 May 2015, Accepted 04 Nov 2015, Published online: 13 Jan 2016

References

  • Daughton CG, Ternes TA. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect. 1999;107:907–938. doi: 10.1289/ehp.99107s6907
  • Kümmerer K. The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges. J Environ Manage. 2009;90:2354–2366. doi: 10.1016/j.jenvman.2009.01.023
  • Bound JP, Voulvoulis N. Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ Health Perspect. 2005;113:1705–1711. doi: 10.1289/ehp.8315
  • Joss A, Zabczynski S, Göbel A, et al. Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res. 2006;40:1686–1696. doi: 10.1016/j.watres.2006.02.014
  • Tixier C, Singer HP, Oellers S, et al. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol. 2003;37:1061–1068. doi: 10.1021/es025834r
  • Calheiros CSC, Rangel AOSS, Castro PML. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresour Technol. 2009;100:3205–3213. doi: 10.1016/j.biortech.2009.02.017
  • Tang X, Scholz M, Eke PE, et al. Nutrient removal as a function of benzene supply within vertical-flow constructed wetlands. Environ Technol. 2010;31:681–691. doi: 10.1080/09593330903530793
  • Vymazal J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol Eng. 2005;25:478–490. doi: 10.1016/j.ecoleng.2005.07.010
  • Truu M, Juhanson J, Truu J. Microbial biomass, activity and community composition in constructed wetlands. Sci Total Environ. 2009;407:3958–3971. doi: 10.1016/j.scitotenv.2008.11.036
  • Verma M, Brar SK, Tyagi RD, et al. Bench-scale fermentation of Trichoderma viride on wastewater sludge: rheology, lytic enzymes and biocontrol activity. Enzyme Microb Technol. 2007;41:764–771. doi: 10.1016/j.enzmictec.2007.06.013
  • Pathak A, Dastidar MG, Sreekrishnan TR. Bioleaching of heavy metals from sewage sludge: a review. J Environ Manage. 2009;90:2343–2353. doi: 10.1016/j.jenvman.2008.11.005
  • Mannan S, Fakhru'l-Razi A, Alam MZ. Use of fungi to improve bioconversion of activated sludge. Water Res. 2005;39:2935–2943. doi: 10.1016/j.watres.2005.04.074
  • Karpouzas DG, Rousidou C, Papadopoulou KK, et al. Effect of continuous olive mill wastewater applications, in the presence and absence of nitrogen fertilization, on the structure of rhizosphere-soil fungal communities. FEMS Microbiol Ecol. 2009;70:388–401. doi: 10.1111/j.1574-6941.2009.00779.x
  • Singh BK, Munro S, Reid E, et al. Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. Eur J Soil Sci. 2006;57:72–82. doi: 10.1111/j.1365-2389.2005.00781.x
  • Roh SW, Abell GCJ, Kim KH, et al. Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol. 2010;28:291–299. doi: 10.1016/j.tibtech.2010.03.001
  • Zhang T, Shao MF, Ye L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2012;6:1137–1147. doi: 10.1038/ismej.2011.188
  • Wang Y, Sheng HF, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol. 2012;78:8264–8271. doi: 10.1128/AEM.01821-12
  • Ma J, Wang Z, Yang Y, et al. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing. Water Res. 2013;47:859–869. doi: 10.1016/j.watres.2012.11.013
  • Verlicchi P, Zambello E. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Sci Total Environ. 2014;470–471:1281–1306. doi: 10.1016/j.scitotenv.2013.10.085
  • Zhang DQ, Gersberg RM, Zhu J, et al. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland. Environ Pollut. 2012;167:124–131. doi: 10.1016/j.envpol.2012.04.004
  • Foster ML, Dowd SE, Stephenson C, et al. Characterization of the fungal microbiome (mycobiome) in fecal samples from dogs. Vet Med Int. 2013;2013:1–8. doi: 10.1155/2013/658373
  • Dowd SE, Callaway TR, Wolcott RD, et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008;8:125. doi: 10.1186/1471-2180-8-125
  • Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09
  • Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219
  • Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381
  • Cole JR, Wang Q, Fish JA, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucl Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244
  • Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x
  • Caselles-Osorio A, García J. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands. Sci Total Environ. 2007;378:253–262. doi: 10.1016/j.scitotenv.2007.02.031
  • Stein OR, Hook PB. Temperature, plants, and oxygen: how does season affect constructed wetland performance? J Environ Sci Heal A. 2005;40:1331–1342. doi: 10.1081/ESE-200055840
  • Hijosa-Valsero M, Matamoros V, Martín-Villacorta J, et al. Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities. Water Res. 2010;44:1429–1439. doi: 10.1016/j.watres.2009.10.032
  • Radjenović J, Petrović M, Barceló D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res. 2009;43:831–841. doi: 10.1016/j.watres.2008.11.043
  • Delgado LF, Charles P, Glucina K, et al. The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon-A review. Sci Total Environ. 2012;435–436:509–525. doi: 10.1016/j.scitotenv.2012.07.046
  • Zhang D, Gersberg RM, Ng WJ, et al. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut. 2014;184:620–639. doi: 10.1016/j.envpol.2013.09.009
  • Winker M, Clemens J, Reich M, et al. Ryegrass uptake of carbamazepine and ibuprofen applied by urine fertilization. Sci Total Environ. 2010;408:1902–1908. doi: 10.1016/j.scitotenv.2010.01.028
  • Gikas P, Ranieri E, Tchobanoglous G. Removal of iron, chromium and lead from waste water by horizontal subsurface flow constructed wetlands. J Chem Technol Biotechnol. 2013;88:1906–1912. doi: 10.1002/jctb.4048
  • Ranieri E, Gikas P, Tchobanoglous G. BTEX removal in pilot-scale horizontal subsurface flow constructed wetlands. Desalin Water Treat. 2013;51:3032–3039. doi: 10.1080/19443994.2012.748453
  • Matamoros V, Gutiérrez R, Ferrer I, et al. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater. 2015;288:34–42. doi: 10.1016/j.jhazmat.2015.02.002
  • Liu Z, Huang S, Sun G, et al. Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China. FEMS Microbiol Ecol. 2012;80:30–44. doi: 10.1111/j.1574-6941.2011.01268.x
  • Vaz-Moreira I, Egas C, Nunes OC, et al. Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. Antonie van Leeuwenhoek. Int J Gen Mol Microb. 2011;100:245–257.
  • Garrido L, Sánchez O, Ferrera I, et al. Dynamics of microbial diversity profiles in waters of different qualities. Approximation to an ecological quality indicator. Sci Total Environ. 2014;468–469:1154–1161. doi: 10.1016/j.scitotenv.2013.08.065
  • McLellan SL, Huse SM, Mueller-Spitz SR, et al. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol. 2010;12:378–392. doi: 10.1111/j.1462-2920.2009.02075.x
  • Junghanns C, Neumann JF, Schlosser D. Application of the aquatic fungus Phoma sp. (DSM22425) in bioreactors for the treatment of textile dye model effluents. J Chem Technol Biotechnol. 2012;87:1276–1283. doi: 10.1002/jctb.3797
  • Giraud F, Guiraud P, Kadri M, et al. Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res. 2001;35:4126–4136. doi: 10.1016/S0043-1354(01)00137-3
  • Ali N, Hameed A, Ahmed S, Khan AG. Decolorization of structurally different textile dyes by Aspergillus niger SA1. World J Microb Biot. 2007;24(7):1067–1072. doi: 10.1007/s11274-007-9577-2
  • Calheiros CSC, Duque AF, Moura A, et al. Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment. Bioresour Technol. 2009;100:3228–3235. doi: 10.1016/j.biortech.2009.02.033
  • Osem Y, Chen Y, Levinson D, et al. The effects of plant roots on microbial community structure in aerated wastewater-treatment reactors. Ecol Eng. 2007;29:133–142. doi: 10.1016/j.ecoleng.2006.06.003
  • Stottmeister U, Wießner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv. 2003;22:93–117. doi: 10.1016/j.biotechadv.2003.08.010
  • García J, Rousseau DPL, Morató J, et al. Contaminant removal processes in subsurface-flow constructed wetlands: a review. Crit Rev Environ Sci Technol. 2010;40:561–661. doi: 10.1080/10643380802471076
  • Guo Y, Gong H, Guo X. Rhizosphere bacterial community of Typha angustifolia L. and water quality in a river wetland supplied with reclaimed water. Appl Microbiol Biotechnol. 2015;99:2883–2893. doi: 10.1007/s00253-014-6182-9
  • Meng P, Hu W, Pei H, et al. Effect of different plant species on nutrient removal and rhizospheric microorganisms distribution in horizontal-flow constructed wetlands. Environ Technol. 2014;35:808–816. doi: 10.1080/09593330.2013.852626
  • Wang R, Baldy V, Périssol C, et al. Influence of plants on microbial activity in a vertical-downflow wetland system treating waste activated sludge with high organic matter concentrations. J Environ Manage. 2012;95:S158–S164. doi: 10.1016/j.jenvman.2011.03.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.