662
Views
31
CrossRef citations to date
0
Altmetric
Articles

The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community

, , , , &
Pages 1683-1692 | Received 17 Apr 2015, Accepted 29 Nov 2015, Published online: 13 Jan 2016

References

  • Morris JM, Jin S, Crimi B, Pruden A. Microbial fuel cell in enhancing anaerobic biodegradation of diesel. Chem Eng J. 2009;146(2):161–167. doi: 10.1016/j.cej.2008.05.028
  • Zhang CP, Liu GL, Zhang RD, Quan XC. Power generation from mixed substrates of quinoline and pyridine using microbial fuel cells. Acta Scientiae Circumstantiae. 2010;30(7):1372–1376.
  • Oh ST, Kim JR, Premier GC, Lee TH, Kim C, Sloan WT. Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv. 2010;28(6):871–881. doi: 10.1016/j.biotechadv.2010.07.008
  • Liu ST, Song HL, Wei SZ, Yang F, Li XN. Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland – microbial fuel cell systems. Bioresour Technol. 2014;166:575–583. doi: 10.1016/j.biortech.2014.05.104
  • Fang Z, Song HL, Cang N, Li X. Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresour Technol. 2013;144:165–171. doi: 10.1016/j.biortech.2013.06.073
  • Yadav AK, Dash P, Mohanty A, Abbassi R, Mishra BK. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecol Eng. 2012;47:126–131. doi: 10.1016/j.ecoleng.2012.06.029
  • Logan BE. Microbial fuel cell. New York: Wiley; 2008.
  • Methe BA, Webster J, Nevin K, Butler J, Lovley DR. DNA microarray analysis of nitrogen fixation and Fe(III) reduction in Geobacter sulfurreducens. Appl Environ Microb. 2005;71(5):2530–2538. doi: 10.1128/AEM.71.5.2530-2538.2005
  • Childers SE, Ciufo S, Lovley DR. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature. 2002;416(6882):767–769. doi: 10.1038/416767a
  • Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediment. Science. 2002;295(5554):483–485. doi: 10.1126/science.1066771
  • Wang ZJ, Lee T, Lim B, Choi C. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate. Biotechnol Biofuels. 2014;7(1):1–10. doi: 10.1186/1754-6834-7-1
  • Sevda S, Dominguez-Benetton X, Vanbroekhoven K, De WH, Sreekrishnan TR, Pant D. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl Energy. 2013;105:194–206. doi: 10.1016/j.apenergy.2012.12.037
  • Sun M, Sheng GP, Zhang L Xia CR, Mu ZX, Liu XW An MEC-MR-coupled system for biohydrogen production from acetate. Environ Sci Technol. 2008;42(21):8095–8100. doi:10.1021/es801513c
  • Kiely PD, Rader G, Regan JM, Logan BE. Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation end products. Bioresour Technol. 2011;102(1):361–366. doi: 10.1016/j.biortech.2010.05.017
  • Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS. Biodegradation of azo dye CI Acid Red 88 by an anoxic-aerobic sequential bioreactor. Dyes Pigments. 2006;70(1):1–7. doi: 10.1016/j.dyepig.2004.12.021
  • Pandey A, Singh P, Iyengar L. Bacterial decolorization and degradation of azo dyes. Int Biodeter Biodegr. 2007;59(2):73–84. doi: 10.1016/j.ibiod.2006.08.006
  • Dos Santos AB, Cervantes FJ, van Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol. 2007;98(12):2369–2385. doi: 10.1016/j.biortech.2006.11.013
  • Mendez-Paz D, Omil F, Lema JM. Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous conditions. Water Res. 2005;39(5):771–778. doi: 10.1016/j.watres.2004.11.022
  • Li ZJ, Zhang XW, Lin J, Han S, Lei LC. Azo dye treatment with simultaneous electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system. Bioresour Technol. 2010;101(12):4440–4445. doi: 10.1016/j.biortech.2010.01.114
  • Bakshid DK, Sharma P. Genotoxicity of textile dyes evaluated with Ames test and rec-assay. J Environ Pathol Toxicol. 2003;22(2):101–109.
  • Wang JA, Guo XK, Guo PQ, Yu JM. Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2. Ultrason Sonochem. 2011;18(2):494–500. doi: 10.1016/j.ultsonch.2010.08.006
  • Kulla HG. Microbial degradation of xenobioties and recalcitrant compounds. London: Academic Press; 1981.
  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microb. 2006;72(11):7345–7348. doi: 10.1128/AEM.01444-06
  • Gorby YA, Yanina S, McLean JS et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA. 2006;103(30):11358–11363. doi: 10.1073/pnas.0604517103
  • Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol. 2010;12(4):1011–1020. doi: 10.1111/j.1462-2920.2009.02145.x
  • Kiely PD, Cusick R, Call DF, Selembo PA, Regan JM, Logan BE. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour Technol. 2011;102(1):388–394. doi: 10.1016/j.biortech.2010.05.019
  • Shehab N, Li D, Amy GL, Logan BE, Saikaly PE. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors. Appl Microbiol Biotechnol. 2013;97(22):9885–9895. doi: 10.1007/s00253-013-5025-4
  • Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. Fems Microbiol Lett. 2004;233(1):77–82. doi: 10.1016/j.femsle.2004.01.041
  • Logan BE, Murano C, Scott K, Gray ND, Head IM. Electricity generation from cysteine in a microbial fuel cell. Water Res. 2005;39(5):942–952. doi: 10.1016/j.watres.2004.11.019
  • Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microb. 2003;69(3):1548–1555. doi: 10.1128/AEM.69.3.1548-1555.2003
  • Plumb JJ, Bell J, Stuckey DC. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl Environ Microb. 2001;67(7):3226–3235. doi: 10.1128/AEM.67.7.3226-3235.2001
  • Lovley DR. Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol. 2006;4(7):497–508. doi: 10.1038/nrmicro1442
  • Huang LP, Chai XL, Quan X, Logan BE, Chen GH. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol. 2012;111:167–174. doi: 10.1016/j.biortech.2012.01.171
  • Kuppardt A, Kleinsteuber S, Vogt C, Luders T, Harms H, Chatzinotas A. Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer. Microbial Ecol. 2014;68(2):222–234. doi: 10.1007/s00248-014-0403-8
  • Sorensen SR, Holtze MS, Simonsen A, Aamand J. Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Appl Environ Microb. 2007;73(2):399–406. doi: 10.1128/AEM.01498-06
  • Chung KT, Stevens SE. Degradation azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem. 1993;11(12):2121–2132.
  • Kudlich M, Keck A, Klein J, Stolz A. Localization of the enzyme system involved in the anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl Environ Microb. 1997;63(9):3691–3694.
  • Sun YM, Wei JC, Liang P, Huang X. Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials. Bioresour Technol. 2011;102(23):10886–10891. doi: 10.1016/j.biortech.2011.09.038
  • Michaelidou U, ter Heijne A, Euverink GJW, Hamelers HVM, Stams AJM, Geelhoed JS. Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Appl Environ Microb. 2011;77(3):1069–1075. doi: 10.1128/AEM.02912-09
  • Jung S, Regan JM. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol. 2007;77(2):393–402. doi: 10.1007/s00253-007-1162-y
  • Fan L, Zhu SN, Liu DQ, Ni JR. Decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by a newly isolated strain of Sphingomonas herbicidovorans. Int Biodeter Biodegr. 2009;63(1):88–92. doi: 10.1016/j.ibiod.2008.07.004
  • Zhang M, Zhang T, Shao MF, Fang HHP. Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria. Chemosphere. 2009;76(5):677–682. doi: 10.1016/j.chemosphere.2009.03.066

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.