957
Views
22
CrossRef citations to date
0
Altmetric
Articles

Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer

, , , &
Pages 2099-2112 | Received 14 Oct 2015, Accepted 08 Jan 2016, Published online: 19 Feb 2016

References

  • Foo KY, Hameed BH. Detoxification of pesticide waste via activated carbon adsorption process. J Hazard Mater. 2010;175:1–11. doi: 10.1016/j.jhazmat.2009.10.014
  • Mohan D, Pittman CU, Jr. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater. 2006;137:762–811. doi: 10.1016/j.jhazmat.2006.06.060
  • Recillas S, Colón J, Casals E, et al. Chromium VI adsorption on cerium oxide nanoparticles and morphology changes during the process. J Hazard Mater. 2010;184:425–431. doi: 10.1016/j.jhazmat.2010.08.052
  • Contreras AR, García A, González E, et al. Potential use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of cadmium from water. Desalin Water Treat. 2012;41:296–300. doi: 10.1080/19443994.2012.664743
  • Lau PS, Tam NFY, Wong YS. Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol. 1997;18:945–951. doi: 10.1080/09593331808616614
  • Trépanier C, Parent S, Comeau Y, Bouvrette J. Phosphorus budget as a water quality management tool for closed aquatic mesocosms. Water Res. 2002;36:1007–1017. doi: 10.1016/S0043-1354(01)00286-X
  • Reijnders L. Phosphorus resources, their depletion and conservation, a review. Resour Conserv Recycl. 2014;93:32–49. doi: 10.1016/j.resconrec.2014.09.006
  • Sengupta S, Pandit A. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Res. 2011;45:3318–3330. doi: 10.1016/j.watres.2011.03.044
  • de-Bashan LE, Bashan Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004;38:4222–4246. doi: 10.1016/j.watres.2004.07.014
  • Kebreab E, Hansen AV, Strathe AB. Animal production for efficient phosphate utilization: from optimized feed to high efficiency livestock. Curr Opin Biotechnol. 2012;23:872–877. doi: 10.1016/j.copbio.2012.06.001
  • Vitti DMSSkE. General introduction. In: Vitti DMSS, Kebreab E, editors. Phosphorus and calcium utilization and requirements in farm animals. London: CAB International; 2010; p. 1–178.
  • Zhu Z, Zeng H, Zhu Y, et al. Kinetics and thermodynamic study of phosphate adsorption on the porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C with eucalyptus wood microstructure. Sep Purif Technol. 2013;117:124–130. doi: 10.1016/j.seppur.2013.05.048
  • Mezenner NY, Bensmaili A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Biochem Eng J. 2009;147:87–96.
  • Prochaska CA, Zouboulis AI. Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate. Ecol Eng. 2006;26:293–303. doi: 10.1016/j.ecoleng.2005.10.009
  • Ramadori R, di Pinto AC, Tandoi V, Sasso C. Chemical precipation of phosphate from sewage at low lime dosage. In: Pawlowski EMWJL, Sarzanini C, editors. Studies in environmental science. Vol. 34. Rome: Elsevier; 1988. p. 223–233.
  • SenGupta A, Zhao D. Using a chelating ion exchange resin saturated with lewis acid, i.e., copper, cations. Google Patents; 2000.
  • Federation WE. Biological nutrient removal (BNR) operation in wastewater treatment plants: WEF manual of practice. Alexandria: McGraw-Hill Education; 2005.
  • Sedlak RI. Phosphorus and nitrogen removal from municipal wastewater: principles and practice, 2nd ed. Abingdon: Taylor & Francis; 1991.
  • Zhao D, Sengupta AK. Ultimate removal of phosphate from wastewater using a new class of polymeric ion exchangers. Water Res. 1998;32:1613–1625. doi: 10.1016/S0043-1354(97)00371-0
  • Isanta E, Figueroa M, Mosquera-Corral A, Campos L, Carrera J, Pérez J. A novel control strategy for enhancing biological N-removal in a granular sequencing batch reactor: a model-based study. Chem Eng J. 2013;232:468–477. doi: 10.1016/j.cej.2013.07.118
  • Carrera J, Vicent T, Lafuente J. Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochem. 2004;39:2035–2041. doi: 10.1016/j.procbio.2003.10.005
  • Bai L, Wang C, Pei Y, Zhao J. Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater. Environ Technol. 2014;35:2752–2759. doi: 10.1080/09593330.2014.920050
  • EMIS. Biological nutrient removal, http://emis.vito.be/techniekfiche/biological-nutrient-removal?language=en 2010 [cited 2015 March 3]. Available from: http://emis.vito.be/techniekfiche/biological-nutrient-removal
  • Yilmaz G, Lemaire R, Keller J, Yuan Z. Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge. Biotechnol Bioeng. 2008;100:529–541. doi: 10.1002/bit.21774
  • Saha B, Chakraborty S, Das G. A mechanistic insight into enhanced and selective phosphate adsorption on a coated carboxylated surface. J Colloid Interface Sci. 2009;331:21–26. doi: 10.1016/j.jcis.2008.11.007
  • de la Noue J, de Pauw N. The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotechnol Adv. 1988;6:725–770. doi: 10.1016/0734-9750(88)91921-0
  • Zelmanov G, Semiat R. The influence of competitive inorganic ions on phosphate removal from water by adsorption on iron (Fe+3) oxide/hydroxide nanoparticles-based agglomerates. J Water Process Eng. 2015;5:143–152. doi: 10.1016/j.jwpe.2014.06.008
  • Qu X, Alvarez PJJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013;47:3931–3946. doi: 10.1016/j.watres.2012.09.058
  • Savage N, Diallo M. Nanomaterials and water purification: opportunities and challenges. J Nanopart Res. 2005;7:331–342. doi: 10.1007/s11051-005-7523-5
  • Zeng L, Li X, Liu J. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Res. 2004;38:1318–1326. doi: 10.1016/j.watres.2003.12.009
  • Zach-Maor A, Semiat R, Shemer H. Synthesis, performance, and modeling of immobilized nano-sized magnetite layer for phosphate removal. J Colloid Interface Sci. 2011;357:440–446. doi: 10.1016/j.jcis.2011.01.021
  • Strauss R, BrÜMmer GW, Barrow NJ. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate. Eur J Soil Sci. 1997;48:101–114. doi: 10.1111/j.1365-2389.1997.tb00189.x
  • Streat M, Hellgardt K, Newton NLR. Hydrous ferric oxide as an adsorbent in water treatment: part 3: batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions. Process Saf Environ. 2008;86:21–30. doi: 10.1016/j.psep.2007.10.009
  • Oguz E. Removal of phosphate from aqueous solution with blast furnace slag. J Hazard Mater. 2004;114:131–137. doi: 10.1016/j.jhazmat.2004.07.010
  • Nowack B, Stone AT. Competitive adsorption of phosphate and phosphonates onto goethite. Water Res. 2006;40:2201–2209. doi: 10.1016/j.watres.2006.03.018
  • Ma J, Zhu L. Simultaneous sorption of phosphate and phenanthrene to inorgano–organo-bentonite from water. J Hazard Mater. 2006;136:982–988. doi: 10.1016/j.jhazmat.2006.01.046
  • Luengo C, Brigante M, Avena M. Adsorption kinetics of phosphate and arsenate on goethite. a comparative study. J Colloid Interface Sci. 2007;311:354–360. doi: 10.1016/j.jcis.2007.03.027
  • Luengo C, Brigante M, Antelo J, Avena M. Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. J Colloid Interface Sci. 2006;300:511–518. doi: 10.1016/j.jcis.2006.04.015
  • Genz A, Kornmüller A, Jekel M. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. Water Res. 2004;38:3523–3530. doi: 10.1016/j.watres.2004.06.006
  • Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T. Phosphate adsorption on synthetic goethite and akaganeite. J Colloid Interface Sci. 2006;298:602–608. doi: 10.1016/j.jcis.2005.12.054
  • Ernst M, Sperlich A, Zheng X, et al. An integrated wastewater treatment and reuse concept for the Olympic Park 2008, Beijing. Desalin. 2007;202:293–301. doi: 10.1016/j.desal.2005.12.067
  • Sánchez A, Recillas S, Font X, Casals E, González E, Puntes V. Ecotoxicity of, and remediation with, engineered inorganic nanoparticles in the environment. Trends Anal Chem. 2011;30:507–516. doi: 10.1016/j.trac.2010.11.011
  • Recillas S, García A, González E, et al. Preliminary study of phosphate adsorption onto cerium oxide nanoparticles for use in water purification; nanoparticles synthesis and characterization. Water Sci Technol. 2012;66:503–509. doi: 10.2166/wst.2012.185
  • Gupta VK, Ali I. Chapter 3 – water treatment for organic pollutants by adsorption technology. In: Ali VKG, editor. Environmental water. Roorkee: Elsevier; 2013. p. 93–116.
  • Ungureanu G, Santos S, Boaventura R, Botelho C. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J Environ Manage. 2015;151:326–342. doi: 10.1016/j.jenvman.2014.12.051
  • Geelhoed JS, Hiemstra T, Van Riemsdijk WH. Phosphate and sulfate adsorption on goethite: single anion and competitive adsorption. Geochim Cosmochim Acta. 1997;61:2389–2396. doi: 10.1016/S0016-7037(97)00096-3
  • Wasay SA, Tokunaga S, Park S-W. Removal of hazardous anions from aqueous solutions by La(lll)- and Y(lll)-lmpregnated alumina. Sep Sci Technol. 1996;31:1501–1514. doi: 10.1080/01496399608001409
  • Zhang L, Gao Y, Li M, Liu J. Expanded graphite loaded with lanthanum oxide used as a novel adsorbent for phosphate removal from water: performance and mechanism study. Environ Technol. 2015;36:1016–1025. doi: 10.1080/09593330.2014.971884
  • Kabayama M, Kawasaki N, Nakamura T, Tanada S. Adsorption/desorption characteristics of phosphate ion onto calcined boehmite surface. J Sur Sci Nanotechnol. 2005;3:63–69. doi: 10.1380/ejssnt.2005.63
  • Kabayama M, Sakiyama T, Kawasaki N, Nakamura T, Araki M, Tanada S. Characteristics of phosphate ion adsorption–desorption onto aluminum oxide hydroxide for preventing eutrophication. J Chem Eng Jpn. 2003;36:499–505. doi: 10.1252/jcej.36.499
  • Gao S, Wang C, Pei Y. Comparison of different phosphate species adsorption by ferric and alum water treatment residuals. J Environ Sci. 2013;25:986–992. doi: 10.1016/S1001-0742(12)60113-2
  • Guaya D, Valderrama C, Farran A, Armijos C, Cortina JL. Simultaneous phosphate and ammonium removal from aqueous solution by a hydrated aluminum oxide modified natural zeolite. Chem Eng J. 2015;271:204–213. doi: 10.1016/j.cej.2015.03.003
  • Oliveira M, Ribeiro D, Nobrega JM, Machado AV, Brito AG, Nogueira R. Removal of phosphorus from water using active barriers: Al2O3 immobilized on to polyolefins. Environ Technol. 2011;32:989–995. doi: 10.1080/09593330.2010.522597
  • Wu D, Shen Y, Ding A, Qiu M, Yang Q, Zheng S. Phosphate removal from aqueous solutions by nanoscale zero-valent iron. Environ Technol. 2013;34:2663–2669. doi: 10.1080/09593330.2013.786103
  • Tang J, Chen J, Huang W, et al. Porous Pr(OH)3 nanowires as novel high-performance adsorbents for phosphate removal. Chem Eng J. 2014;252:202–209. doi: 10.1016/j.cej.2014.04.091
  • Xu N, Li Y, Zheng L, et al. Synthesis and application of magnesium amorphous calcium carbonate for removal of high concentration of phosphate. Chem Eng J. 2014;251:102–110. doi: 10.1016/j.cej.2014.04.037
  • Su Y, Yang W, Sun W, Li Q, Shang JK. Synthesis of mesoporous cerium–zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water. Chem Eng J. 2015;268:270–279. doi: 10.1016/j.cej.2015.01.070
  • Zong E, Wei D, Wan H, Zheng S, Xu Z, Zhu D. Adsorptive removal of phosphate ions from aqueous solution using zirconia-functionalized graphite oxide. Chem Eng J. 2013;221:193–203. doi: 10.1016/j.cej.2013.01.088
  • Lin Y-F, Chen H-W, Chen Y-C, Chiou C-S. Application of magnetite modified with polyacrylamide to adsorb phosphate in aqueous solution. Taiwan Inst Chem E. 2013;44:45–51. doi: 10.1016/j.jtice.2012.09.005
  • Bastin O, Janssens F, Dufey J, Peeters A. Phosphorus removal by a synthetic iron oxide–gypsum compound. Ecol Eng. 1999;12:339–351. doi: 10.1016/S0925-8574(98)00077-9
  • Lakshmanan R, Okoli C, Boutonnet M, Järås S, Rajarao GK. Microemulsion prepared magnetic nanoparticles for phosphate removal: time efficient studies. J Environ Chem Eng. 2014;2:185–189. doi: 10.1016/j.jece.2013.12.008
  • Zhang C, Chen L, Wang T-J, Su C-L, Jin Y. Synthesis and properties of a magnetic core–shell composite nano-adsorbent for fluoride removal from drinking water. Appl Surf Sci. 2014;317:552–559. doi: 10.1016/j.apsusc.2014.08.143
  • Bhaumik M, Leswifi TY, Maity A, Srinivasu VV, Onyango MS. Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater. 2011;186:150–159. doi: 10.1016/j.jhazmat.2010.10.098
  • Tu Y-J, You C-F, Chang C-K, Chen M-H. Application of magnetic nano-particles for phosphorus removal/recovery in aqueous solution. Taiwan Inst Chem E. 2015;46:148–154. doi: 10.1016/j.jtice.2014.09.016
  • Yang J, Zeng Q, Peng L, et al. La-EDTA coated Fe3O4 nanomaterial: preparation and application in removal of phosphate from water. J Environ Sci. 2013;25:413–418. doi: 10.1016/S1001-0742(12)60014-X
  • Zou C, Gu T, Xiao P, Ge T, Wang M, Wang K. Experimental study of Cucurbit[7]uril derivatives modified acrylamide polymer for enhanced oil recovery. Ind Eng Chem Res. 2014;53:7570–7578. doi: 10.1021/ie4037824
  • Roy S, Yue CY, Venkatraman SS, Ma LL. Fabrication of smart COC chips: advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers. Sens Actuators, B. 2013;178:86–95. doi: 10.1016/j.snb.2012.12.058
  • Shin Y, Lee D, Lee K, Ahn KH, Kim B. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications. J Ind Eng Chem. 2008;14:515–519. doi: 10.1016/j.jiec.2008.02.002
  • Xiong H-M. Photoluminescent ZnO nanoparticles modified by polymers. J Mater Chem. 2010;20:4251–4262. doi: 10.1039/b918413a
  • DeMarco MJ, SenGupta AK, Greenleaf JE. Arsenic removal using a polymeric/inorganic hybrid sorbent. Water Res. 2003;37:164–176. doi: 10.1016/S0043-1354(02)00238-5
  • Cumbal L, Greenleaf J, Leun D, SenGupta AK. Polymer supported inorganic nanoparticles: characterization and environmental applications. React Funct Polym. 2003;54:167–180. doi: 10.1016/S1381-5148(02)00192-X
  • Onyango MS, Kojima Y, Matsuda H, Ochieng A. Adsorption kinetics of arsenic removal from groundwater by Iron-Modified Zeolite. J Chem Eng Jpn. 2003;36:1516–1522. doi: 10.1252/jcej.36.1516
  • Katsoyiannis IA, Zouboulis AI. Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res. 2002;36:5141–5155. doi: 10.1016/S0043-1354(02)00236-1
  • Cumbal L, SenGupta AK. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles:  role of donnan membrane effect. Environ Sci Technol. 2005;39:6508–6515. doi: 10.1021/es050175e
  • Zhang Y, Pan B. Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. Chem Eng J. 2014;249:111–120. doi: 10.1016/j.cej.2014.03.073
  • You X, Guaya D, Farran A, Valderrama C, Cortina JL. Phosphate removal from aqueous solution using a hybrid impregnated polymeric sorbent containing hydrated ferric oxide (HFO). J Chem Technol Biotechnol. 2016;91(3):693–704. doi: 10.1002/jctb.4629
  • Pan B, Wu J, Pan B, et al. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents. Water Res. 2009;43:4421–4429. doi: 10.1016/j.watres.2009.06.055
  • Blaney LM, Cinar S, SenGupta AK. Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res. 2007;41:1603–1613. doi: 10.1016/j.watres.2007.01.008
  • Yang W, Yu Z, Pan B, Lv L, Zhang W. Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: a case study of p-nitrophenol and phosphate. Chem Eng J. 2015;268:399–407. doi: 10.1016/j.cej.2015.01.051
  • Abo-Farha SA, Abdel-Aal AY, Ashour IA, Garamon SE. Removal of some heavy metal cations by synthetic resin purolite C100. J Hazard Mater. 2009;169:190–194. doi: 10.1016/j.jhazmat.2009.03.086
  • Liu C, Huang PM. Kinetics of phosphate adsorption on iron oxides formed under the influence of citrate. Canadian J Soil Sci. 2000;80:445–454. doi: 10.4141/S99-079
  • Colombo C, Barrón V, Torrent J. Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochim Cosmochim Acta. 1994;58:1261–1269. doi: 10.1016/0016-7037(94)90380-8
  • Alonso A, Vigues N, Munoz-Berbel X, et al. Environmentally-safe bimetallic Ag@Co magnetic nanocomposites with antimicrobial activity. Chem Commun. 2011;47:10464–10466. doi: 10.1039/c1cc13696h
  • Alonso A. Development of polymeric nanocomposites with enhanced distribution of catalytically active or bactericide nanoparticles. 2012.
  • Alonso A, Shafir A, Macanás J, et al. Recyclable polymer-stabilized nanocatalysts with enhanced accessibility for reactants. Catal Today. 2012;193:200–206. doi: 10.1016/j.cattod.2012.02.003
  • Dorado AD, Gamisans X, Valderrama C, Solé M, Lao C. Cr(III) removal from aqueous solutions: a straightforward model approaching of the adsorption in a fixed-bed column. J Environ Sci Health Part A. 2013;49:179–186. doi: 10.1080/10934529.2013.838855
  • Nur T, Johir MAH, Loganathan P, Nguyen T, Vigneswaran S, Kandasamy J. Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin. J Ind Eng Chem. 2014;20:1301–1307. doi: 10.1016/j.jiec.2013.07.009
  • Vente JA, Bosch H, de Haan AB, Bussmann PJT. Evaluation of sugar sorption isotherm measurement by frontal analysis under industrial processing conditions. J Chromatogr A. 2005;1066:71–79. doi: 10.1016/j.chroma.2004.12.071
  • Dorado AD, Lafuente J, Gabriel D, Gamisans X. The role of water in the performance of biofilters: parameterization of pressure drop and sorption capacities for common packing materials. J Hazard Mater. 2010;180:693–702. doi: 10.1016/j.jhazmat.2010.04.093
  • Lemine OM, Omri K, Zhang B, et al. Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices Microstruct. 2012;52:793–799. doi: 10.1016/j.spmi.2012.07.009
  • Neyaz N, Zarger MSS, Siddiqui WA. Synthesis and characterisation of modified magnetite super paramagnetic nano composite for removal of toxic metals from ground water. Int J Environ Sci. 2014;5:260–269. doi: 10.7763/IJESD.2014.V5.488
  • Farghali MA, El-Din TAS, Al-Enizi AM, Bahnasawy RME. Graphene/ magnetite nanocomposite for potential environmental application. Int J Electrochem Sci. 2015;10:529–537.
  • Ahn J-H, Jang J-E, Oh C-G, Ihm S-K, Cortez J, Sherrington DC. Rapid generation and control of microporosity, bimodal pore size distribution, and surface area in davankov-type hyper-cross-linked resins. Macromolecules. 2006;39:627–632. doi: 10.1021/ma051152n
  • Rodrigues L, da Silva M. Adsorption kinetic, thermodynamic and desorption studies of phosphate onto hydrous niobium oxide prepared by reverse microemulsion method. Adsorption. 2010;16:173–181. doi: 10.1007/s10450-010-9220-7
  • Zeng H, Fisher B, Giammar DE. Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent. Environ Sci Technol. 2008;42:147–152. doi: 10.1021/es071553d
  • Krishnan KA, Haridas A. Removal of phosphate from aqueous solutions and sewage using natural and surface modified coir pith. J Hazard Mater. 2008;152:527–535. doi: 10.1016/j.jhazmat.2007.07.015
  • Das J, Patra BS, Baliarsingh N, Parida KM. Adsorption of phosphate by layered double hydroxides in aqueous solutions. Appl Clay Sci. 2006;32:252–260. doi: 10.1016/j.clay.2006.02.005
  • Kim J, Li W, Philips BL, Grey CP. Phosphate adsorption on the iron oxyhydroxides goethite ([small alpha]-FeOOH), akaganeite ([small beta]-FeOOH), and lepidocrocite ([gamma]-FeOOH): a 31P NMR Study. Energy Environ Sci. 2011;4:4298–4305. doi: 10.1039/c1ee02093e

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.