483
Views
14
CrossRef citations to date
0
Altmetric
Articles

The variability and causes of organic carbon retention ability of different agricultural straw types returned to soil

, , , , , & show all
Pages 538-548 | Received 12 Aug 2015, Accepted 05 Jun 2016, Published online: 05 Jul 2016

References

  • Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl. 1991;1:182–195. doi: 10.2307/1941811
  • Davidson EA, Trumbore SE, Amundson R. Biogeochemistry – Soil warming and organic carbon content. Nature. 2000;408:789–790. doi: 10.1038/35048672
  • Hu Y, Wang L, Tang YS, et al. Variability in soil microbial community and activity between coastal and riparian wetlands in the Yangtze River estuary – Potential impacts on carbon sequestration. Soil Biol Biochem. 2014;70:221–228. doi: 10.1016/j.soilbio.2013.12.025
  • Elliott ET, Metherell AK, Paustian K, Cole CV. Analysis of agroecosystem carbon pools. Water Air Soil Poll. 1993;70:357–371. doi: 10.1007/BF01105007
  • Hoffert MI, Caldeira K, Benford G, et al. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science. 2002;298:981–987. doi: 10.1126/science.1072357
  • Allen MR, Frame DJ, Huntingford C, et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature. 2009;458:1163–1166. doi: 10.1038/nature08019
  • Wise M, Calvin K, Thomson A, et al. Implications of limiting CO2 concentrations for land use and energy. Science. 2009;324:1183–1186. doi: 10.1126/science.1168475
  • Schlesinger WH, Lal R, Kimble J, Levin E, editors. An overview of the C cycle. CRC Press, Inc.; 1995. Boca Raton: Soils and Global Change; p. 9–26.
  • Vandergon HACD, Neue HU. Influence of organic-matter incorporation on the methane emission from a wetland rice field. Global Biogeochem Cycle. 1995;9:11–22. doi: 10.1029/94GB03197
  • Watanabe A, Yoshida M, Kimura M. Contribution of rice straw carbon to CH4 emission from rice paddies using 13C-enriched rice straw. J Geophys Res-Atmos. 1998;103:8237–8242. doi: 10.1029/97JD03460
  • Watanabe A, Takeda T, Kimura M. Evaluation of origins of CH4 carbon emitted from rice paddies. J Geophys Res Atmos. 1999;104:23623–9. doi: 10.1029/1999JD900467
  • Glissmann K, Conrad R. Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. Fems Microbiol Ecol. 2000;31:117–126. doi: 10.1111/j.1574-6941.2000.tb00677.x
  • Conrad R, Klose M. Dynamics of the methanogenic archaeal community in anoxic rice soil upon addition of straw. Eur J Soil Sci. 2006;57:476–484. doi: 10.1111/j.1365-2389.2006.00791.x
  • Stockfisch N, Forstreuter T, Ehlers W. Ploughing effects on soil organic matter after twenty years of conservation tillage in Lower Saxony, Germany. Soil Till Res. 1999;52:91–101. doi: 10.1016/S0167-1987(99)00063-X
  • Wilson AT. Pioneer agriculture explosion and CO2 levels in the atmosphere. Nature. 1978;273:40–41. doi: 10.1038/273040a0
  • Yagi K, Minami K. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci Plant Nutr. 1990;36:599–610. doi: 10.1080/00380768.1990.10416797
  • Zou JW, Huang Y, Jiang JY, Zheng XH, Sass RL. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Global Biogeochem Cycle. 2005;19, article no. GB2021. doi:10.1029/2004GB002401
  • Koga N, Smith P, Yeluripati JB, Shirato Y, Kimura SD, Nemoto M. Estimating net primary production and annual plant carbon inputs, and modelling future changes in soil carbon stocks in arable farmlands of northern Japan. Agric Ecosyst Environ. 2011;144:51–60. doi: 10.1016/j.agee.2011.07.019
  • Niles JO, Brown S, Pretty J, Ball AS, Fay J. Potential carbon mitigation and income in developing countries from changes in use and management of agricultural and forest lands. Philos T Roy Soc A. 2002;360:1621–1639. doi: 10.1098/rsta.2002.1023
  • Zhu HH, Wu JS, Huang DY, et al. Improving fertility and productivity of a highly-weathered upland soil in subtropical China by incorporating rice straw. Plant Soil. 2010;331:427–437. doi: 10.1007/s11104-009-0263-z
  • Liu SL, Huang DY, Chen AL, et al. Differential responses of crop yields and soil organic carbon stock to fertilization and rice straw incorporation in three cropping systems in the subtropics. Agric Ecosyst Environ. 2014;184:51–58. doi: 10.1016/j.agee.2013.11.019
  • Parr JF, Papendick RI, Oschwald WR, editor. Factors affecting the decomposition of crop residues by micro-organisms. Madison: American Society of Agronomy; 1978. Crop Residue Management Systems; p. 101–129.
  • Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems. Berkeley: University of California Press; 1979.
  • Kirschbaum MUF. Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biol. 2004;10:1870–1877. doi: 10.1111/j.1365-2486.2004.00852.x
  • Mary B, Recous S, Darwis D, Robin D. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil. 1996;181:71–82. doi: 10.1007/BF00011294
  • Roldan A, Salinas-Garcia JR, Alguacil MM, Diaz E, Caravaca F. Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical conditions. Geoderma. 2005;129:178–185. doi: 10.1016/j.geoderma.2004.12.042
  • Carter MR. Microbial biomass as an index for tillage-induced changes in soil biological properties. Soil Till Res. 1986;7:29–40. doi: 10.1016/0167-1987(86)90005-X
  • Kandeler E, Stemmer M, Klimanek EM. Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol Biochem. 1999;31:261–273. doi: 10.1016/S0038-0717(98)00115-1
  • Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biol. 2009;15:808–824. doi: 10.1111/j.1365-2486.2008.01681.x
  • Le Guillou C, Angers DA, Leterme P, Menasseri-Aubry S. Differential and successive effects of residue quality and soil mineral N on water-stable aggregation during crop residue decomposition. Soil Biol Biochem. 2011;43:1955–1960. doi: 10.1016/j.soilbio.2011.06.004
  • Martens DA. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration. Soil Biol Biochem. 2000;32:361–369. doi: 10.1016/S0038-0717(99)00162-5
  • Sanaullah M, Chabbi A, Leifeld J, Bardoux G, Billou D, Rumpel C. Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference? Plant Soil. 2011;338:127–141. doi: 10.1007/s11104-010-0554-4
  • Barzegar AR, Yousefi A, Daryashenas A. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant Soil. 2002;247:295–301. doi: 10.1023/A:1021561628045
  • Raiesi F. Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agric Ecosyst Environ. 2006;112:13–20. doi: 10.1016/j.agee.2005.07.002
  • Yan Q. Ecological succession in salt marsh vegetation at Chongming Dongtan Wetland. Shanghai: East China Normal University; 2006. p. 7–8.
  • Kampichler C, Bruckner A. The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies. Biol Rev. 2009;84:375–389. doi: 10.1111/j.1469-185X.2009.00078.x
  • Webster, R. Soil sampling and methods of analysis – Edited by M.R. Carter & E.G. Gregorich. Eur J Soil Sci. 2008;59:1010–1011. doi: 10.1111/j.1365-2389.2008.01052_5.x
  • Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2
  • Olson JS. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 1963;44:322–331. doi: 10.2307/1932179
  • Nakatsu T, Ichiyama S, Hiratake J, et al. Structural basis for the spectral difference in luciferase bioluminescence. Nature. 2006;440:372–376. doi: 10.1038/nature04542
  • Wessén B, Berg B. Long-term decomposition of barley straw: chemical changes and ingrowth of fungal mycelium. Soil Biol Biochem. 1986;18:53–59. doi: 10.1016/0038-0717(86)90103-3
  • Welsch M, Yavitt JB. Early stages of decay of Lythrum salicaria L. and Typha latifolia L. in a standing-dead position. Aquat Bot. 2003;75:45–57. doi: 10.1016/S0304-3770(02)00164-X
  • Hadas A, Kautsky L, Goek M, Kara EE. Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem. 2004;36:255–266. doi: 10.1016/j.soilbio.2003.09.012
  • Peng JJ, Lu Z, Rui J, Lu YH. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl Environ Microb. 2008;74:2894–2901. doi: 10.1128/AEM.00070-08
  • Fey A, Claus P, Conrad R. Temporal change of C-13-isotope signatures and methanogenic pathways in rice field soil incubated anoxically at different temperatures. Geochim Cosmochim Ac. 2004;68:293–306. doi: 10.1016/S0016-7037(03)00426-5
  • Lu Y, Fu L, Lu YH, Hugenholtz F, Ma K. Effect of temperature on the structure and activity of a methanogenic archaeal community during rice straw decomposition. Soil Biol Biochem. 2015;81:17–27. doi: 10.1016/j.soilbio.2014.10.031
  • Torres IF, Bastida F, Hernandez T, Bombach P, Richnow HH, Garcia C. The role of lignin and cellulose in the carbon-cycling of degraded soils under semiarid climate and their relation to microbial biomass. Soil Biol Biochem. 2014;75:152–160. doi: 10.1016/j.soilbio.2014.04.007
  • Boonyuen N, Manoch L, Luangsa-ard JJ, et al. Decomposition of sugarcane bagasse with lignocellulose-derived thermotolerant and thermoresistant Penicillia and Aspergilli. Int Biodeter Biodegr. 2014;92:86–100. doi: 10.1016/j.ibiod.2014.04.013
  • Updegraf DM. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969;32:420–424. doi: 10.1016/S0003-2697(69)80009-6
  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol Lett. 2009;12:1238–1249. doi: 10.1111/j.1461-0248.2009.01360.x
  • Moitinho MR, Padovan MP, Panosso AR, Teixeira DD, Ferraudo AS, La Scala N. On the spatial and temporal dependence of CO2 emission on soil properties in sugarcane (Saccharum spp.) production. Soil Till Res. 2015;148:127–132. doi: 10.1016/j.still.2014.12.012
  • Devêvre OC, Horwáth WR. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biol Biochem. 2000;32:1773–1785. doi: 10.1016/S0038-0717(00)00096-1
  • Alarcon-Gutierrez E, Floch C, Ziarelli F, Augur C, Criquet S. Drying-rewetting cycles and gamma-irradiation effects on enzyme activities of distinct layers from a Quercus ilex L. litter. Soil Biol Biochem. 2010;42:283–290. doi: 10.1016/j.soilbio.2009.11.005
  • Linn DM, Doran JW. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J. 1984;48:1267–1272. doi: 10.2136/sssaj1984.03615995004800060013x
  • Di HJ, Cameron KC, Podolyan A, Robinson A. Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biol Biochem. 2014;73:59–68. doi: 10.1016/j.soilbio.2014.02.011
  • Keyser P, Kirk TK, Zeikus JG. Lignolytic enzyme of Phanaerochaete chrysosporium: synthetized in the absence of lignin in response to nitrogen starvation. J Bacteriol. 1978;135:790–797.
  • Bowles TM, Acosta-Martinez V, Calderon F, Jackson LE. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem. 2014;68:252–262. doi: 10.1016/j.soilbio.2013.10.004
  • Jiang B, Wang WX, Gu F, Cao TY, Jin YC. Comparison of the substrate enzymatic digestibility and lignin structure of wheat straw stems and leaves pretreated by green liquor. Bioresource Technol. 2016;199:181–187. doi: 10.1016/j.biortech.2015.08.104
  • Rahikainen JL, Martin-Sampedro R, Heikkinen H, et al. Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technol. 2013;133:270–278. doi: 10.1016/j.biortech.2013.01.075
  • Melillo JM, Steudler PA, Aber JD, et al. Soil warming and carbon-cycle feedbacks to the climate system. Science. 2002;298:2173–2176. doi: 10.1126/science.1074153
  • Trinsoutrot I, Recous S, Mary B, Nicolardota B. C and N fluxes of decomposing C-13 and N-15 Brassica napus L.: effects of residue composition and N content. Soil Biol Biochem. 2000;32:1717–1730. doi: 10.1016/S0038-0717(00)00090-0
  • Berg B, Mcclaugherty C. Plant litter: decomposition, humus formation, carbon sequestration. 3rd ed. Berlin: Springer; 2014. Chapter I-XII; p. 1–315.
  • Bonanomi G, Senatore M, Migliozzi A, et al. Decomposition of submerged plant litter in a Mediterranean reservoir: a microcosm study. Aquat Bot. 2015;120:169–177. doi: 10.1016/j.aquabot.2014.05.006
  • Taylor BR, Parkinson D, Parsons, WFJ. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology. 1989;70:97–104. doi: 10.2307/1938416
  • Janssen BH. Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials. Plant Soil. 1996;181:39–45. doi: 10.1007/BF00011290
  • Zech W, Senesi N, Guggenberger G, et al. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma. 1997;79:117–161. doi: 10.1016/S0016-7061(97)00040-2
  • Zhao XM, He L, Zhang ZD, Wang HB, Zhao LP. Simulation of accumulation and mineralization (CO2 release) of organic carbon in chernozem under different straw return ways after corn harvesting. Soil Till Res. 2016;156:148–154. doi: 10.1016/j.still.2015.11.001
  • Paustian K, Six J, Elliott ET, Hunt HW. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry. 2000;48:147–163. doi: 10.1023/A:1006271331703

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.