535
Views
23
CrossRef citations to date
0
Altmetric
Articles

Continuous flow operation with appropriately adjusting composites in influent for recovery of Cr(VI), Cu(II) and Cd(II) in self-driven MFC–MEC system

, , , &
Pages 615-628 | Received 19 Dec 2015, Accepted 19 Jun 2016, Published online: 12 Jul 2016

References

  • Soares EV, Soares HMVM. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res. 2012;19:1066–1083. doi: 10.1007/s11356-011-0671-5
  • Wang H, Ren ZJ. Bioelectrochemical metal recovery from wastewater: a review. Water Res. 2014;66:219–232. doi: 10.1016/j.watres.2014.08.013
  • Nancharaiah YV, Venkata Mohan S, Lens PNL. Metals removal and recovery in bioelectrochemical systems: a review. Bioresour Technol. 2015;195:102–114. doi: 10.1016/j.biortech.2015.06.058
  • Li W, Yu H, He Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci. 2014;7:911–924. doi: 10.1039/C3EE43106A
  • Logan BE. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol. 2010;85:1665–1671. doi: 10.1007/s00253-009-2378-9
  • Huang L, Cheng S, Chen G. Bioelectrochemical systems for efficient recalcitrant wastes treatment. J Chem Technol Biotechnol. 2011;86:481–491. doi: 10.1002/jctb.2551
  • Wang G, Huang L, Zhang Y. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett. 2008;30:1959–1966. doi: 10.1007/s10529-008-9792-4
  • Ter Heijne A, Liu F, Van Der Weijden R, Weijma J, Buisman CJN, Hamelers HVM. Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol. 2010;44:4376–4381. doi: 10.1021/es100526g
  • Cheng S, Wang B, Wang Y. Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresour Technol. 2013;147:332–337. doi: 10.1016/j.biortech.2013.08.040
  • Abourached C, Catal T, Liu H. Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Res. 2014;51:228–233. doi: 10.1016/j.watres.2013.10.062
  • Modin O, Wang X, Wu X, Rauch S, Fedje KK. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. J Hazard Mater. 2012;235:291–297. doi: 10.1016/j.jhazmat.2012.07.058
  • Tao HC, Lei T, Shi G, et al. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J Hazard Mater. 2014;264:1–7. doi: 10.1016/j.jhazmat.2013.10.057
  • Luo H, Liu G, Zhang R, Bai Y, Fu S, Hou Y. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. J Hazard Mater. 2014;270:153–159. doi: 10.1016/j.jhazmat.2014.01.050
  • Wang Q, Huang L, Pan Y, et al. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems. Bioresour Technol. 2016;200:565–571. doi: 10.1016/j.biortech.2015.10.084
  • Sun M, Sheng GP, Zhang L, et al. An MEC-MFC-coupled system for biohydrogen production from acetate. Environ Sci Technol. 2008;42:8095–8100. doi: 10.1021/es801513c
  • Sun M, Sheng GP, Mu ZX, et al. Manipulating the hydrogen production from acetate in an MEC-MFC-coupled system. J Power Sources. 2009;191:338–343. doi: 10.1016/j.jpowsour.2009.01.087
  • Zhao HZ, Zhang Y, Chang YY, Li Z-S. Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells. J Power Sources. 2012;217:59–64. doi: 10.1016/j.jpowsour.2012.06.014
  • Huang L, Yao BL, Wu D, Quan X. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell–microbial electrolysis cell systems. J Power Sources. 2014;259:54–64. doi: 10.1016/j.jpowsour.2014.02.061
  • Zhang Y, Yu L, Wu D, et al. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. J Power Sources. 2015;273:1103–1113. doi: 10.1016/j.jpowsour.2014.09.126
  • Zhuang L, Yuan Y, Wang Y, Zhou S. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Bioresour Technol. 2012;123:406–412. doi: 10.1016/j.biortech.2012.07.038
  • Venkata Mohan S, Velvizhi G, Annie Modestra J, Srikanth S. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sust Energ Rev. 2014;40:779–797. doi: 10.1016/j.rser.2014.07.109
  • Huang L, Wang Q, Jiang L, Zhou P, Quan X, Logan BE. Adaptively evolving bacterial communities for complete and selective reduction of Cr(VI), Cu(II) and Cd(II) in biocathode bioelectrochemical systems. Environ Sci Technol. 2015;49:9914–9924. doi: 10.1021/acs.est.5b00191
  • Dekker A, Ter Heijne A, Saakes M, Hamelers HVM, Buisman C. Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ Sci Technol. 2009;43:9038–9042. doi: 10.1021/es901939r
  • Gurung A, Oh SE. The performance of serially and parallelly connected microbial fuel cells. Energy Sources, Part A. 2012;34:1591–1598. doi: 10.1080/15567036.2011.629277
  • Hassan SHA, Gad El-Rab SMF, Rahimnejad M, et al. Electricity generation from rice straw using a microbial fuel cell. Inter J Hydrogen Energ. 2014;39:9490–9496. doi: 10.1016/j.ijhydene.2014.03.259
  • Ge Z, Wu L, Zhang F, He Z. Energy extraction from a large-scale microbial fuel cell system treating municiple wastewater. J Power Sources. 2015;297:260–264. doi: 10.1016/j.jpowsour.2015.07.105
  • Wu D, Pan Y, Huang L, Quan X, Yang J. Comparison of Co(II) reduction on three different cathodes of microbial electrolysis cells driven by Cu(II)-reduced microbial fuel cells under various cathode volume conditions. Chem Eng J. 2015;266:121–132. doi: 10.1016/j.cej.2014.12.078
  • Kim HW, Nam JY, Shin HS. Ammonia inhibition and microbial adaptation in continuous single-chamber microbial fuel cells. J Power Sources. 2011;196:6210–6213. doi: 10.1016/j.jpowsour.2011.03.061
  • Rahimnejad M, Ghoreyshi AA, Najafpour G, Jafary T. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl Energ. 2011;88:3999–4004. doi: 10.1016/j.apenergy.2011.04.017
  • Cai J, Zheng P, Qaisar M, Xing Y. Effect of operating modes on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell. J Ind Microbial Biotechnol. 2014;41:795–802. doi: 10.1007/s10295-014-1425-4
  • Jacobson KS, Kelly PT, He Z. Energy balance affected by electrolyte recirculation and operating modes in microbial fuel cells. Water Environ Res. 2015;87:252–257. doi: 10.2175/106143015X14212658613235
  • Yuan Y, You SJ, Zhang JN, Gong X-B, Wang X-H, Ren N-Q. Pilot-scale bioelectrochemical system for efficient conversion of 4-chloronitrobenzene. Environ Technol. 2015;36:1847–1854. doi: 10.1080/09593330.2015.1013572
  • Sevda S, Dominguez-Benetton X, Graichen FHM, et al. Shift to continuous operation of an air-cathode microbial fuel cell long-running in fed-batch mode boosts power generation. Inter J Green Energy. 2016;13:71–79. doi: 10.1080/15435075.2014.909363
  • Zhang C, Liang P, Jiang Y, Huang X. Enhanced power generation of micobial fuel cell using manganese dioxide-coated anode in flow-through mode. J Power Sources. 2015;273:580–583. doi: 10.1016/j.jpowsour.2014.09.129
  • Ahn Y, Logan BE. A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Appl Microbiol Biotechnol. 2012;93:2241–2248. doi: 10.1007/s00253-012-3916-4
  • Wang H, Jiang SC, Wang Y, Xiao B. Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater. Bioresour Technol. 2013;138:109–116. doi: 10.1016/j.biortech.2013.03.172
  • Lanas V, Ahn Y, Logan BE. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. J Power Sources. 2014;247:228–234. doi: 10.1016/j.jpowsour.2013.08.110
  • Huang L, Jiang L, Wang Q, Quan X, Yang J, Chen L. Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells. Chem Eng J. 2014;253:281–290. doi: 10.1016/j.cej.2014.05.080
  • Huang L, Liu Y, Yu L, Quan X, Chen G. A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode microbial fuel cells. J Clean Prod. 2015;86:441–446. doi: 10.1016/j.jclepro.2014.08.018
  • Wang Q, Huang L, Yu H, et al. Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. Inter J Hydrogen Energ. 2015;40:184–196. doi: 10.1016/j.ijhydene.2014.11.014
  • Wu D, Pan Y, Huang L, Zhou P, Quan X, Chen H. Complete separation of Cu(II), Co(II) and Li(I) using self-driven MFCs-MECs with stainless steel mesh cathodes under continuous flow conditions. Sep Purif Technol. 2015;147:114–124. doi: 10.1016/j.seppur.2015.04.016
  • Kubota K, Watanabe T, Yamaguchi T, Syutsubo K. Characterization of wastewater treatment by two microbial fuel cells in continuous flow operation. Environ Technol. 2016;37:114–120. doi: 10.1080/09593330.2015.1064169
  • Horvat T, Vidaković-Cifrek Ž, Oreščanin V, Tkalec M, Pevalek-Kozlina B. Toxicity assessment of heavy metal mixtures by Lemna minor L. Sci Total Environ. 2007;384:229–238. doi: 10.1016/j.scitotenv.2007.06.007
  • Sciban M, Radetic B, Kevresan D, Klašnja M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour Technol. 2007;98:402–409. doi: 10.1016/j.biortech.2005.12.014
  • Wei J, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour Technol. 2011;102:9335–9344. doi: 10.1016/j.biortech.2011.07.019
  • Liu X, Li W, Yu H. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem Soc Rev. 2014;43:7718–7745. doi: 10.1039/C3CS60130G
  • Wu D, Huang L, Quan X, Li Puma G. Electricity generation and bivalent copper reduction as a function of operation time and cathode electrode material in microbial fuel cells. J Power Sources. 2016;307:705–714. doi: 10.1016/j.jpowsour.2016.01.022
  • Cheng S, Xing D, Call D, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol. 2009;43:3953–3958. doi: 10.1021/es803531g
  • Cusick RD, Ullery ML, Dempsey BA, Logan BE. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell. Water Res. 2014;54:297–306. doi: 10.1016/j.watres.2014.01.051
  • Shen J, Sun Y, Huang L, Yang J. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal. Front Environ Sci Eng. 2015;9:1084–1095. doi: 10.1007/s11783-015-0805-y
  • Gonzalez S, Lopez-Roldan R, Cortina JL. Presence of metals in drinking water distribution networks due to pipe material leaching: a review. Toxicol Environ Chem. 2013;95:870–889. doi: 10.1080/02772248.2013.840372
  • Huang L, Yang X, Quan X, Chen J, Yang F. A microbial fuel cell–electro-oxidation system for coking wastewater treatment and bioelectricity generation. J Chem Technol Biotechnol. 2010;85:621–627. doi: 10.1002/jctb.2320
  • Liang P, Wu W, Wei J, Yuan L, Xia X, Huang X. Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical systems. Environ Sci Technol. 2011;45:6647–6653. doi: 10.1021/es200759v

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.