289
Views
21
CrossRef citations to date
0
Altmetric
Articles

454-Pyrosequencing analysis of highly adapted azo dye-degrading microbial communities in a two-stage anaerobic–aerobic bioreactor treating textile effluent

, , , &
Pages 687-693 | Received 05 Apr 2016, Accepted 28 Jun 2016, Published online: 22 Jul 2016

References

  • Chung K, Stevens Jr S. Degradation of azo dyes by environmental microorganisms and helminths. Environ Toxicol Chem. 1993;12:2121–2132.
  • Pinheiro HM, Touraud E, Thomas O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophtometric detection in textile industry wastewaters. Dyes Pigments. 2004;61:121–139. doi: 10.1016/j.dyepig.2003.10.009
  • Puvaneswari N, Muthukrishnan J, Gunasekaran P. Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol. 2006;44:618–626.
  • Neppolian B, Choi H, Sakthivel S, Arabindoo B, Murugesan V. Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4. Chemosphere. 2002;46:1173–1181. doi: 10.1016/S0045-6535(01)00284-3
  • Chebli D, Fourcade F, Brosillon S, Nacef S, Amrane A. Integration of photocatalysis and biological treatment for azo dye removal – application to AR183. Environ Technol. 2011;32:507–514. doi: 10.1080/09593330.2010.504236
  • Tang W, Zhang Z, An H, Quintana M, Torres D. TiO2/UV photodegradation of azo dyes in aqueous solutions. Environ Technol. 1997;18:1–12. doi: 10.1080/09593330.1997.9618466
  • Pereira AR, da Costa RS, Yokoyama L, Alhadeff EM, Teixeira LAC. Evaluation of textile dye degradation due to the combined action of enzyme horseradish peroxidase and hydrogen peroxide. Appl Biochem Biotech. 2014;174:2741–2747. doi: 10.1007/s12010-014-1222-6
  • Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol. 2011;41:807–878. doi: 10.1080/10643380903218376
  • Pandey A, Singh P, Iyengar L. Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegr. 2007;59:73–84. doi: 10.1016/j.ibiod.2006.08.006
  • Shah MP, Patel KA, Nair SS, Darji AM, Maharaul S. Microbial degradation of azo dye by Pseudomonas spp. MPS-2 by an application of sequential microaerophilic & aerobic process. Am J Microbiol Res. 2013;1:105–112. doi: 10.12691/ajmr-1-4-7
  • Xu H, Heinze TM, Paine DD, Cerniglia CE, Chen H. Sudan azo dyes and para Red degradation by prevalent bacteria of the human gastrointestinal tract. Anaerobe. 2010;16:114–119. doi: 10.1016/j.anaerobe.2009.06.007
  • Franciscon E, Zille A, Fantinatti-Garboggini F, Serrano Silva I, Cavaco-Paulo A, Durrant LR. Microaerophilic-aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem. 2009;44:446–452. doi: 10.1016/j.procbio.2008.12.009
  • Prasad S, Aikat K. Study of bio-degradation and bio-decolourization of azo dye by Enterobacter sp. SXCR. Environ Technol. 2014;35:956–965. doi: 10.1080/09593330.2013.856957
  • Kolekar YM, Nemade NH, Markad VL, Adav SS, Patole MS. Decolorization and biodegradation of azo dye, reactive blue 59 by aerobic granules. Bioresource Technol. 2012;104:818–822. doi: 10.1016/j.biortech.2011.11.046
  • Tan L, Ning S, Wang Y, Cao X. Aerobic decolorization of acid brilliant scarlet GR by microbial community and the community dynamics during sequencing batch processes. World J Microbiol Biotechnol. 2013;29:1763–1771. doi: 10.1007/s11274-012-1249-1
  • van der Zee F, Villaverde S. Combined anaerobic-aerobic treatment of azo dyes – a short review of bioreactor studies. Water Res. 2005;39:1425–1440. doi: 10.1016/j.watres.2005.03.007
  • Mendonça de Lucena R, Gavazza S, Florencio L, Kato MT, de Morais Jr M. Study of the microbial diversity in a full-scale UASB reactor treating domestic wastewater. World J Microbiol Biotechnol. 2011;27:2893–2902. doi: 10.1007/s11274-011-0771-x
  • Ferraz Jr ADN, Kato MT, Florencio L, Gavazza S. Textile effluent treatment in a UASB reactor followed by submerged aerated biofiltration. Water Sci Technol. 2011;64:1581–1589. doi: 10.2166/wst.2011.674
  • Griffiths R, AS W, O’Donnell A, Bailey M. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol. 2000;66:5488–5491. doi: 10.1128/AEM.66.12.5488-5491.2000
  • Cardenas E, Wu W-M, Leigh MB, et al. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach. Appl Environ Microbiol. 2010;76:6778–6786. doi: 10.1128/AEM.01097-10
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Meth. 2010;7:335–336. doi: 10.1038/nmeth.f.303
  • Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Meth. 2012;9:425–426. doi: 10.1038/nmeth.1990
  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461
  • Edgar R, Haas B, Clemente J, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381
  • Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07
  • R Core Development Team. R: a language and environment for statistical computing. 2008 – [cited 2016 March 29]. Available from: https://cran.r-project.org/.
  • Oksanen J, Blanchet FG, Kindt R, et al. Vegan: Community Ecology Package [Internet]. 2013 – [cited 2016 March 29] . Available from: http://CRAN.R-project.org/package=vegan.
  • Jost L. Entropy and diversity. Oikos. 2006;113:363–375. doi: 10.1111/j.2006.0030-1299.14714.x
  • De Vrieze J, Verstraete W, Boon N. Repeated pulse feeding induces functional stability in anaerobic digestion. Microbiol Biotechnol. 2013;6:414–424. doi: 10.1111/1751-7915.12025
  • Rainey FA, Hollen BJ, Small A. Genus I. Clostridium. In: Paul De Vos, George M. Garrity, Dorothy Jones, Noel R. Krieg, Wolfgang Ludwig, Fred A. Rainey, Karl-Heinz Schleifer, William B. Whitman, editors. Bergey's manual of systematic bacteriology, 2nd ed. Vol. 3. New York: Springer; 2009. pp. 1–1422.
  • Esteve-Núñez A, Caballero A, Ramos J. Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev. 2001;65:335–352. doi: 10.1128/MMBR.65.3.335-352.2001
  • Kleinsteuber S, Schleinitz K, Breitfeld J, Harms H, Richnow H, Vogt C. Molecular characterization of bacterial communities mineralizing benzene under sulfate-reducing conditions. FEMS Microbiol Ecol. 2008;66:143–157. doi: 10.1111/j.1574-6941.2008.00536.x
  • Fernando E, Keshavarz T, Kyazze G. Simultaneous co-metabolic decolourisation of azo dye mixtures and bio-electricity generation under thermophillic (50°C) and saline conditions by an adapted anaerobic mixed culture in microbial fuel cells. Bioresource Technol. 2013;127:1–8. doi: 10.1016/j.biortech.2012.09.065
  • Morrison J, Wright C, John G. Identification, isolation and characterization of a novel azoreductase from Clostridium perfringens. Anaerobe. 2012;18:229–234. doi: 10.1016/j.anaerobe.2011.12.006
  • Zhang Z, Hou Z, Yang C, Ma C, Tao F, Xu P. Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresource Technol. 2011;102:4111–4116. doi: 10.1016/j.biortech.2010.12.064
  • Yoon S, Hennigan R, Hilliard G, et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell. 2002;3:593–603. doi: 10.1016/S1534-5807(02)00295-2
  • Perei K, Rákhely G, Kiss I, Polyák B, Kovács K. Biodegradation of sulfanilic acid by Pseudomonas paucimobilis. Appl Microbiol Biotechnol. 2001;55:101–107. doi: 10.1007/s002530000474
  • Khera M, Saini H, Sharma D, Chadha B, SS C. Biodegradation of azo dye C.I. acid Red 88 by an anoxic-aerobic sequential bioreactor. Dyes Pigments. 2006;70:1–7. doi: 10.1016/j.dyepig.2004.12.021
  • Nachiyar C, Rajakumar G. Purification and characterization of an oxygen insensitive azoreductase from Pseudomonas aeruginosa. Enzyme Microbiol Tech. 2005;36:503–509. doi: 10.1016/j.enzmictec.2004.11.015
  • Chivukula M, Renganathan V. Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol. 1995;61:4374–4377.
  • Li D, Yang M, Li Z, Qi R, He J, Liu H. Change of bacterial communities in sediments along Songhua river in northeastern China after a nitrobenzene pollution event. FEMS Microbiol Ecol. 2008;65:494–503. doi: 10.1111/j.1574-6941.2008.00540.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.