2,546
Views
12
CrossRef citations to date
0
Altmetric
Articles

Physical and biochemical changes in sludge upon Tubifex tubifex predation

, , , &
Pages 1524-1538 | Received 05 Aug 2016, Accepted 08 Sep 2016, Published online: 29 Sep 2016

References

  • Gendebien A, Davis B, Hobson J, et al. Environmental, economic and social impacts of the use of sewage sludge on land Final Report Part III: Project Interim Reports; 2010.
  • Commission of European Communities. Council directive 91/271/EEC of 21 March 1991 concerning urban wastewater treatment amended by the 98/15/EC of 27 February; 1998.
  • Tchobanoglous G, Burton FL, Metcalf & Eddy. Wastewater engineering: treatment, disposal and reuse. 3rd ed. New York: McGraw-Hill; 1991.
  • Bougrier C, Albasi C, Delgenes J, et al. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem Eng Process. 2006;45:711–718. doi: 10.1016/j.cep.2006.02.005
  • Jaziri K, Casellas M, Dagot C. Comparing the effects of three pre-treatment disintegration techniques on aerobic sludge digestion: biodegradability enhancement and microbial community monitoring by PCR–DGGE. Environ Technol. 2012;33:1435–1444. doi: 10.1080/09593330.2011.632653
  • Pilli S, Yan S, Tyagi RD, et al. Thermal pretreatment of sewage sludge to enhance anaerobic digestion: a review. Crit Rev Environ Sci Technol. 2015;45:669–702. doi: 10.1080/10643389.2013.876527
  • Chen G-H, An K-J, Saby S, et al. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process). Water Res. 2003;37:3855–3866. doi: 10.1016/S0043-1354(03)00331-2
  • Novak JT, Chon DH, Curtis B-A, et al. Biological solids reduction using the cannibal process. Water Environ. Res. 2007;79:2380–2386. doi: 10.2175/106143007X183862
  • Wang Y, Li Y, Wu G. SRT contributes significantly to sludge reduction in the OSA-based activated sludge process. Environ Technol. 2016;3330:1–11.
  • Van Loosdrecht M, Henze M. Maintenance, endogeneous respiration, lysis, decay and predation. Water Sci Technol. 1999;39:107–117. doi: 10.1016/S0273-1223(98)00780-X
  • Ratsak CH, Verkuijlen J. Sludge reduction by predatory activity of aquatic oligochaetes in wastewater treatment plants: science or fiction? A review. Hydrobiologia. 2006;564:197–211. doi: 10.1007/s10750-005-1719-7
  • Wei Y, Liu J. The discharged excess sludge treated by Oligochaeta. Water Sci Technol. 2005;52:265–272.
  • Liang P, Huang X, Qian Y. Excess sludge reduction in activated sludge process through predation of Aeolosoma hemprichi. Biochem Eng J. 2006;28:117–122. doi: 10.1016/j.bej.2005.09.008
  • Elissen HJH, Hendrickx TLG, Temmink H, et al. A new reactor concept for sludge reduction using aquatic worms. Water Res. 2006;40:3713–3718. doi: 10.1016/j.watres.2006.08.029
  • Hendrickx TLG, Temmink H, Elissen HJH, et al. Aquatic worms eat sludge: mass balances and processing of worm faeces. J Hazard Mater. 2010;177:633–638. doi: 10.1016/j.jhazmat.2009.12.079
  • Hendrickx TLG, Elissen HHJ, Temmink H, et al. Operation of an aquatic worm reactor suitable for sludge reduction at large scale. Water Res. 2011;45:4923–4929. doi: 10.1016/j.watres.2011.06.031
  • Hendrickx TLG, Temmink H, Elissen HJH, et al. The effect of operating conditions on aquatic worms eating waste sludge. Water Res. 2009;43:943–950. doi: 10.1016/j.watres.2008.11.034
  • Guo X, Liu J, Wei Y, et al. Sludge reduction with Tubificidae and the impact on the performance of the wastewater treatment process. J Environ Sci. 2007;19:257–263. doi: 10.1016/S1001-0742(07)60042-4
  • Huang X, Liang P, Qian Y. Excess sludge reduction induced by Tubifex tubifex in a recycled sludge reactor. J. Biotechnol. 2007;127:443–451. doi: 10.1016/j.jbiotec.2006.07.035
  • Wei Y, Zhu H, Wang Y, et al. Nutrients release and phosphorus distribution during oligochaetes predation on activated sludge. Biochem Eng J. 2009;43:239–245. doi: 10.1016/j.bej.2008.10.004
  • Tamis J, van Schouwenburg G, Kleerebezem R, et al. A full scale worm reactor for efficient sludge reduction by predation in a wastewater treatment plant. Water Res. 2011;45:5916–5924. doi: 10.1016/j.watres.2011.08.046
  • Wang Q, Wang Z, Wu Z, et al. Sludge reduction and process performance in a submerged membrane bioreactor with aquatic worms. Chem Eng J. 2011;172:929–935. doi: 10.1016/j.cej.2011.07.004
  • Tian Y, Li Z, Lu Y. Changes in characteristics of soluble microbial products and extracellular polymeric substances in membrane bioreactor coupled with worm reactor: relation to membrane fouling. Bioresour Technol. 2012;122:62–69. doi: 10.1016/j.biortech.2012.05.009
  • Tian Y, Lu Y, Li Z. Performance analysis of a combined system of membrane bioreactor and worm reactor: wastewater treatment, sludge reduction and membrane fouling. Bioresour Technol. 2012;121:176–182. doi: 10.1016/j.biortech.2012.06.071
  • Tian Y, Li Z, Ding Y, et al. Identification of the change in fouling potential of soluble microbial products (SMP) in membrane bioreactor coupled with worm reactor. Water Res. 2013;47:2015–2024. doi: 10.1016/j.watres.2013.01.026
  • Matisoff G, Wang X. Solute transport in sediments by freshwater infaunal bioirrigators. Limnol. Oceanogr. 1998;43:1487–1499. doi: 10.4319/lo.1998.43.7.1487
  • Michaud E, Desrosiers G, Mermillod-Blondin F, et al. The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. J Exp Mar Bio Ecol. 2005;326:77–88. doi: 10.1016/j.jembe.2005.05.016
  • Mermillod-Blondin F, Rosenberg R. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat Sci. 2006;68:434–442. doi: 10.1007/s00027-006-0858-x
  • Brinkhurst RO, Chua KE. Preliminary investigation of the exploitation of some potential nutritional resources by three sympatric tubificid oligochaetes. J Fish Res Board Canada. 1969;26:2659–2668. doi: 10.1139/f69-258
  • Wavre M, Brinkhurst RO. Interactions between some Tubificid Oligochaetes and bacteria found in the sediments of Toronto Harbour, Ontario. J Fish Res Board Canada. 1971;28:335–341. doi: 10.1139/f71-045
  • Tsuchiya M, Kurihara Y. The feeding habits and food sources of the deposit-feeding polychaete, Neanthes Japonica (Izuka). J Exp Mar Bio Ecol. 1979;36:79–89. doi: 10.1016/0022-0981(79)90101-1
  • Plante CJ, Shriver AG. Differential lysis of sedimentary bacteria by Arenicola marina L.: examination of cell wall structure and exopolymeric capsules as correlates. J Exp Mar Bio Ecol. 1998;229:35–52. doi: 10.1016/S0022-0981(98)00039-2
  • Liu J, Zuo W, Zhang J, et al. Shifts in microbial community structure and diversity in a MBR combined with worm reactors treating synthetic wastewater. J Environ Sci. 2016:1–10. DOI:10.1016/j.jes.2016.03.009
  • Tiehm A, Nickel K, Zellhorn M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 2001;35:2003–2009. doi: 10.1016/S0043-1354(00)00468-1
  • Vavilin VA, Fernandez B, Palatsi J, et al. Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag. 2008;28:939–951. doi: 10.1016/j.wasman.2007.03.028
  • Cai L, Gao D, Wang K, et al. Sludge reduction using aquatic worms under different aeration regimes. Environ. Technol. 2016;3330:1–7. doi: 10.1080/09593330.2016.1210241
  • A.P.H.A. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation; 2012.
  • Lawler D. Particle size distributions in treatment processes: theory and practice. Water Sci Technol. 1997;36:15–23. doi: 10.1016/S0273-1223(97)00414-9
  • DuBois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–356. doi: 10.1021/ac60111a017
  • Lowry OH, Rosenbrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol. Chem. 1951;193:265–275.
  • Frølund B, Griebe T, Nielsen PH. Enzymatic activity in the activated-sludge floc matrix. Appl Microbiol Biotechnol. 1995;43:755–761. doi: 10.1007/s002530050481
  • Avella AC, Görner T, de Donato P. The pitfalls of protein quantification in wastewater treatment studies. Sci Total Environ. 2010;408:4906–4909. doi: 10.1016/j.scitotenv.2010.05.039
  • Coble PG. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem. 1996;51:325–346. doi: 10.1016/0304-4203(95)00062-3
  • McKnight DM, Boyer EW, Westerhoff PK, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr. 2001;46:38–48. doi: 10.4319/lo.2001.46.1.0038
  • Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review. River Res Appl. 2007;23:631–649. doi: 10.1002/rra.1005
  • D’Andrilli J, Foreman CM, Marshall AG, et al. Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. Org Geochem. 2013;65:19–28. doi: 10.1016/j.orggeochem.2013.09.013
  • Marhaba TF, Lippincott RL. Application of fluorescence technique for rapid identification of DOM fractions in source waters. J Environ Eng. 2000;126:1039–1044. doi: 10.1061/(ASCE)0733-9372(2000)126:11(1039)
  • Marhaba T. Rapid identification of dissolved organic matter fractions in water by spectral fluorescent signatures. Water Res. 2000;34:3543–3550. doi: 10.1016/S0043-1354(00)00090-7
  • van Langerak EPA, Gonzalez-Gil G, van Aelst A, et al. Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (UASB) reactors. Water Res. 1998;32:1255–1263. doi: 10.1016/S0043-1354(97)00335-7
  • Frølund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996;30:1749–1758. doi: 10.1016/0043-1354(95)00323-1
  • Lin Y, de Kreuk M, van Loosdrecht MCM, et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant. Water Res. 2010;44:3355–3364. doi: 10.1016/j.watres.2010.03.019
  • Buys BR, Klapwijk A, Elissen H, et al. Development of a test method to assess the sludge reduction potential of aquatic organisms in activated sludge. Bioresour Technol. 2008;99:8360–8366. doi: 10.1016/j.biortech.2008.02.041
  • Tan WF, Koopal LK, Weng LP, et al. Humic acid protein complexation. Geochim Cosmochim Acta. 2008;72:2090–2099. doi: 10.1016/j.gca.2008.02.009
  • Tomaszewski JE, Schwarzenbach RP, Sander M. Protein Encapsulation by Humic Substances. Environ Sci Technol. 2011;45:6003–6010. doi: 10.1021/es200663h
  • Wang Z, Cao J, Meng F. Interactions between protein-like and humic-like components in dissolved organic matter revealed by fluorescence quenching. Water Res. 2015;68:404–413. doi: 10.1016/j.watres.2014.10.024
  • Brisbane PG, Amato M, Ladd JN. Gas chromatographic analysis of amino acids from the action of proteolytic enzymes on soil humic acids. Soil Biol Biochem. 1972;4:51–61. doi: 10.1016/0038-0717(72)90042-9
  • Swift RS, Posner AM. The distribution and extraction of soil nitrogen as a function of soil particle size. Soil Biol Biochem. 1972;4:181–186. doi: 10.1016/0038-0717(72)90009-0
  • Knicker H. Nature of organic nitrogen in fine particle size separates of sandy soils of highly industrialized areas as revealed by NMR spectroscopy. Soil Biol Biochem. 2000;32:241–252. doi: 10.1016/S0038-0717(99)00154-6
  • Shan J, Brune A, Ji R. Selective digestion of the proteinaceous component of humic substances by the geophagous earthworms Metaphire guillelmi and Amynthas corrugatus. Soil Biol Biochem. 2010;42:1455–1462. doi: 10.1016/j.soilbio.2010.05.008
  • Lin YM, Sharma PK, van Loosdrecht MCM. The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge. Water Res. 2013;47:57–65. doi: 10.1016/j.watres.2012.09.017
  • Abbassi B, Dullstein S, Räbiger N. Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs; experimental and theoretical approach. Water Res. 2000;34:139–146. doi: 10.1016/S0043-1354(99)00108-6
  • Stricot M, Filali A, Lesage N, et al. Side-stream membrane bioreactors: influence of stress generated by hydrodynamics on floc structure, supernatant quality and fouling propensity. Water Res. 2010;44:2113–2124. doi: 10.1016/j.watres.2009.12.021
  • Inamori Y, Kuniyasu Y, Hayashi N, et al. Monoxenic and mixed cultures of the small metazoa Philodina erythrophthalma and Aeolosoma hemprichi isolated from a waste-water treatment process. Appl Microbiol Biotechnol. 1990;34:404–407. doi: 10.1007/BF00170069
  • Jin B, Wilén B-M, Lant P. A comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge. Chem Eng J. 2003;95:221–234. doi: 10.1016/S1385-8947(03)00108-6
  • Chen H, Zhou S, Li T. Impact of extracellular polymeric substances on the settlement ability of aerobic granular sludge. Environ Technol. 2010;31:1601–1612. doi: 10.1080/09593330.2010.482146
  • Park C, Abu-Orf MM, Novak JT. The digestibility of waste activated sludges. Water Environ Res. 2006;78:59–68. doi: 10.2175/106143005X84521
  • Hall T. Sonication induced changes of particle size and their effects on activated sludge dewaterability. Environ Technol Lett. 1982;3:79–88. doi: 10.1080/09593338209384102
  • Novak JT, Sadler ME, Murthy SN. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Water Res. 2003;37:3136–3144. doi: 10.1016/S0043-1354(03)00171-4
  • Higgins MJ, Novak JT. Characterization of Exocellular Protein and Its Role in Bioflocculation. J Environ Eng 1997;123:479–485. doi: 10.1061/(ASCE)0733-9372(1997)123:5(479)
  • Chari NVHK, Sarma NS, Pandi SR, et al. Seasonal and spatial constraints of fluorophores in the midwestern Bay of Bengal by PARAFAC analysis of excitation emission matrix spectra. Estuar Coast Shelf Sci. 2012;100:162–171. doi: 10.1016/j.ecss.2012.01.012
  • Park C, Novak JT, Helm RF, et al. Evaluation of the extracellular proteins in full-scale activated sludges. Water Res. 2008;42:3879–3889. doi: 10.1016/j.watres.2008.05.014
  • Fernandes TV. Hydrolysis inhibition of complex biowaste. Wageningen, The Netherlands: Wageningen University; 2010.
  • Bruus JH, Nielsen PH, Keiding K. On the stability of activated sludge flocs with implications to dewatering. Water Res. 1992;26:1597–1604. doi: 10.1016/0043-1354(92)90159-2
  • Higgins MJ, Novak JT. The effect of cations on the settling and dewatering of activated sludges: laboratory results. Water Environ. Res. 1997;69:215–224. doi: 10.2175/106143097X125371
  • Sobeck DC, Higgins MJ. Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 2002;36:527–538. doi: 10.1016/S0043-1354(01)00254-8
  • Rokosz MJ, Vinogradov SN. X-ray fluorescence spectrometric determination of the metal content of the extracellular hemoglobin of Tubifex tubifex. Biochim Biophys Acta – Protein Struct Mol Enzymol. 1982;707:291–293. doi: 10.1016/0167-4838(82)90364-8
  • Füredi-Milhofer H, Purgarić B, Brečević L, et al. Precipitation of calcium phosphates from electrolyte solutions. Calcif Tissue Res. 1971;8:142–153. doi: 10.1007/BF02010131
  • Mañas A, Pocquet M, Biscans B, et al. Parameters influencing calcium phosphate precipitation in granular sludge sequencing batch reactor. Chem Eng Sci. 2012;77:165–175. doi: 10.1016/j.ces.2012.01.009
  • Azman S, Khadem A, Zeeman G, et al. Mitigation of humic acid inhibition in anaerobic digestion of cellulose by addition of various salts. Bioengineering. 2015;2:54–65. doi: 10.3390/bioengineering2020054
  • Nielsen PH, Keiding K. Disintegration of activated sludge flocs in presence of sulfide. Water Res. 1998;32:313–320. doi: 10.1016/S0043-1354(97)00235-2
  • Murthy SN, Novak JT. Factors affecting floc properties during aerobic digestion: implications for dewatering. Water Environ. Res. 1999;71:197–202. doi: 10.2175/106143098X121879
  • Ivanov V, Stabnikov V, Zhuang WQ, et al. Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria. J Appl Microbiol. 2005;98:1152–1161. doi: 10.1111/j.1365-2672.2005.02567.x
  • Gutierrez O, Park D, Sharma KR, et al. Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment. Water Res. 2010;44:3467–3475. doi: 10.1016/j.watres.2010.03.023
  • Serrano A, Hendrickx TLG, Elissen HHJ, et al. Can aquatic worms enhance methane production from waste activated sludge? Bioresour Technol. 2016;211:51–57. doi: 10.1016/j.biortech.2016.03.061