184
Views
2
CrossRef citations to date
0
Altmetric
Articles

Study of positive and negative plasma catalytic oxidation of ethylene

, &
Pages 1554-1561 | Received 14 Mar 2016, Accepted 09 Sep 2016, Published online: 06 Oct 2016

References

  • Kolarik B, Wargocki P, Skorek-Osikowska A, et al. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods. Build Environ. 2010;45(6):1434–1440. doi: 10.1016/j.buildenv.2009.12.006
  • Zhang J, Smith KR. Indoor air pollution: a global health concern. Br Med Bul. 2003;68(1):209–225. doi: 10.1093/bmb/ldg029
  • Kebriaei M, Ketabi A, Niasar AH. Pulsed corona discharge, a new and effective technique for water and air treatment. Biol For. 2015;7(1):1686–1692.
  • Fridman A. Plasma chemistry. New York (NY): Cambridge University Press; 2012.
  • Wais SI, Giliyana DD. Sphere-to-plane electrodes configuration of positive and negative plasma corona discharge. Am J Mod Phys. 2013;2(2):46–52. doi: 10.11648/j.ajmp.20130202.12
  • Malik MA, Schoenbach KH. Nitric oxide conversion and ozone synthesis in a shielded sliding discharge reactor with positive and negative streamers. Plasma Chem Plasma Process. 2014;34(1):93–109. doi: 10.1007/s11090-013-9497-x
  • Malik MA. Ozone synthesis using shielded sliding discharge: effect of oxygen content and positive versus negative streamer mode. Ind Eng Chem Res. 2014;53(31):12305–12311. doi: 10.1021/ie5018805
  • Chang JS, Lawless PA, Yamamoto T. Corona discharge processes. IEEE Trans Plasma Sci. 1991;19(6):1152–1166. doi: 10.1109/27.125038
  • Chen J, Davidson JH. Model of the negative DC corona plasma: comparison to the positive DC corona plasma. Plasma Chem Plasma Process. 2003;23(1):83–102. doi: 10.1023/A:1022468803203
  • Boelter KJ, Davidson JH. Ozone generation by indoor, electrostatic air cleaners. Aerosol Sci Technol. 1997;27(6):689–708. doi: 10.1080/02786829708965505
  • Viner AS, Lawless PA, Ensor DS, et al. Ozone generation in DC-energized electrostatic precipitators. IEEE Trans Ind Appl. 1992;28(3):504–512. doi: 10.1109/28.137427
  • Awad MB, Castle GSP. Ozone generation in an electrostatic precipitator with a heated corona wire. J Air Pollut Control Assoc. 1975;25(4):369–374. doi: 10.1080/00022470.1975.10470092
  • Ohkubo T, Hamasaki S, Nomoto Y, et al. The effect of corona wire heating on the downstream ozone concentration profiles in an air-cleaning wire-duct electrostatic precipitator. IEEE Trans Ind Appl. 1990;26(3):542–549. doi: 10.1109/28.55962
  • Nashimoto K. The effects of electrode materials on O3 and NOx emissions by corona discharging. J Imaging Sci. 1988;32(5):205–210.
  • Bahri M, Haghighat F. Plasma-based indoor air cleaning technologies: the state of the art-review. Clean Soil Air Water. 2014;42(12):1667–1680. doi: 10.1002/clen.201300296
  • Guaitella O, Thevenet F, Puzenat E, et al. C2H2 oxidation by plasma/TiO2 combination: influence of the porosity, and photocatalytic mechanisms under plasma exposure. Appl Catal B: Environ. 2008;80(3–4):296–305. doi: 10.1016/j.apcatb.2007.11.032
  • Holzer F, Roland U, Kopinke FD. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: part 1. Accessibility Intra-particle Volume. Appl Catal B: Environ. 2002;38(3):163–181. doi: 10.1016/S0926-3373(02)00040-1
  • Zhu T, Chen R, Xia N, et al. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/y-Al2O3. Environ Technol. 2015;36(11):1405–1413. doi: 10.1080/09593330.2014.992479
  • Neyts E, Bogaerts A. Understanding plasma catalysis through modelling and simulation-a review. J Phys D: Appl Phys. 2014;47(22):224010. doi: 10.1088/0022-3727/47/22/224010
  • Fujishima H, Ueda Y, Tomimatsu K, et al. Electrohydrodynamics of spiked electrode electrostatic precipitators. J Electrostatics. 2004;62(4):291–308. doi: 10.1016/j.elstat.2004.05.006
  • Van Wesenbeeck K, Hauchecorne B, Lenaerts S. Study of a TiO2 photocatalytic coating for use in plasma catalysis. Commun Agric Appl Biol Sci. 2013;78:16–24.
  • Balasubramanian G, Dionysiou DD, Suidan MT, et al. Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water. Appl Catal B: Environ. 2004;47(2):73–84. doi: 10.1016/j.apcatb.2003.04.002
  • Balasubramanian G, Dionysiou DD, Suidan MT, et al. Titania powder modified sol–gel process for photocatalytic applications. J Mater Sci. 2003;38(4):823–831. doi: 10.1023/A:1021869200589
  • Chen Y, Dionysiou DD. TiO2 photocatalytic films on stainless steel: the role of Degussa P-25 in modified sol–-gel methods. Appl Catal B: Environ. 2006;62(3-4):255–264. doi: 10.1016/j.apcatb.2005.07.017
  • Van Wesenbeeck K, Hauchecorne B, Lenaerts S. Integration of a photocatalytic coating in a corona discharge unit for plasma assisted catalysis. J Environ Sol. 2013;2:16–24.
  • Bakardjieva S, Subrt J, Stengl V, et al. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl Catal B: Environ. 2005;58(3–4):193–202. doi: 10.1016/j.apcatb.2004.06.019
  • Keshmiri M, Mohseni M, Troczynski T. Development of novel TiO2 sol−gel-derived composite and its photocatalytic activities for trichloroethylene oxidation. Appl Catal B: Environ. 2004;53(4):209–219. doi: 10.1016/j.apcatb.2004.05.016
  • Tytgat T, Hauchecorne B, Smits M, et al. Concept and validation of a fully automated photocatalytic test set-up. JALA. 2012;17(2):134–143.
  • Hauchecorne B, Tytgat T, Verbruggen SW, et al. Photocatalytic degradation of ethylene: an FTIR in situ study under atmospheric conditions. Appl Catal B: Environ. 2011;105(1–2):111–116. doi: 10.1016/j.apcatb.2011.03.041
  • Verbruggen SW, Ribbens S, Tytgat T, et al. The benefit of glass bead supports for efficient gas phase photocatalysis: case study of a commercial and a synthesised photocatalyst. Chem Eng J. 2011;174(1):318–325. doi: 10.1016/j.cej.2011.09.038
  • Tytgat T, Hauchecorne B, Abakumov AM, et al. Photocatalytic process optimisation for ethylene oxidation. Chem Eng J. 2012;209(0):494–500. doi: 10.1016/j.cej.2012.08.032
  • Jaworek A, Krupa A, Czech T. Decomposition of NO2 in oxygen-free NO2: N2 gas mixture by back-corona generated plasma. Contrib Plasma Phys. 1996;36(5):619–629. doi: 10.1002/ctpp.2150360508
  • Masuda S, Mizuno A. Light measurement of back discharge. J Electrostatics. 1977;2(4):375–396. doi: 10.1016/0304-3886(77)90008-0
  • Chang CL, Bai H. An experimental study on the performance of a single discharge wire-plate electrostatic precipitator with back corona. J Aerosol Sci. 1999;30(3):325–340. doi: 10.1016/S0021-8502(98)00064-0
  • Chen Y, Dionysiou DD. A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2-P25 composite films and macroporous TiO2 films coated on stainless steel substrate. Appl Catal A: Gen. 2007;317(1):129–137. doi: 10.1016/j.apcata.2006.10.025
  • Loeb LB. Electrical coronas, their basic physical mechanisms. Berkeley (CA): University of California Press; 1965.
  • Loeb LB. Fundamental processes of electrical discharge in gases. New York (NY): Wiley; 1947.
  • Raizer YP. Gas discharge physics. Berlin: Springer-Verlag; 1997.
  • Chen J, Davidson JH. Ozone production in the negative DC corona: the dependence of discharge polarity. Plasma Chem Plasma Process. 2003;23(3):501–518. doi: 10.1023/A:1023235032455
  • Fava G, Pierpaoli M. A hybrid photocatalytic-electrostatic reactor for nitrogen oxides removal. Am J Environ Eng Sci. 2015;2(1):7–13.
  • Karuppiah J, Sivachandiran L, Karvembu R, et al. Catalytic nonthermal plasma reactor for the abatement of low concentrations of isopropanol. Chem Eng J. 2010;165(1):194–199. doi: 10.1016/j.cej.2010.09.017
  • Schiorlin M. Non-thermal plasma processing for the decomposition of organic pollutants [dissertation]. Padova (Italy): Padova University; 2010.
  • Sekiguchi K, Sanada A, Sakamoto K. Degradation of toluene with an ozone-decomposition catalyst in the presence of ozone, and the combined effect of TiO2 addition. Catal Commun. 2003;4(5):247–252. doi: 10.1016/S1566-7367(03)00047-5
  • Roland U, Holzer F, Kopinke FD. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: part 2. Ozone decomposition and deactivation of y-Al2O3. Appl Catal B: Environ. 2005;58(3–4):217–226. doi: 10.1016/j.apcatb.2004.11.024
  • Harling AM, Glover DJ, Whitehead JC, et al. The role of ozone in the plasma-catalytic destruction of environmental pollutants. Appl Catal B: Environ. 2009;90(1–2):157–161. doi: 10.1016/j.apcatb.2009.03.005
  • Zhu T, Li J, Jin Y, et al. Decomposition of benzene by non-thermal plasma processing: photocatalyst and ozone effect. Int J Environ Sci Technol. 2008;5(3):375–384. doi: 10.1007/BF03326032
  • Ohtani B, Zhang SW, Nishimoto SI, et al. Catalytic and photocatalytic decomposition of ozone at room temperature over titanium(IV) oxide. J Chem Soc Faraday T. 1992;88(7):1049–1053. doi: 10.1039/ft9928801049
  • Zhao WC, Cheng JP, Chen Y, et al. Degradation of selected indoor air pollutants: comparison study of photocatalytic, ozone-assisted photocatalytic and amine adsorption processes. J Shanghai Jiaotong Univ. 2012;17(1):13–19. doi: 10.1007/s12204-012-1224-x
  • Pengyi Z, Fuyan L, Gang Y, et al. A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. J Photochem Photobiol A. 2003;156(1–3):189–194. doi: 10.1016/S1010-6030(02)00432-X
  • Huang X, Yuan J, Shi J, et al. Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts. J Hazard Mater. 2009;171(1–3):827–832. doi: 10.1016/j.jhazmat.2009.06.070

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.