382
Views
16
CrossRef citations to date
0
Altmetric
Articles

Catalytic ozonation of dimethyl phthalate using Fe3O4/multi-wall carbon nanotubes

, &
Pages 2048-2057 | Received 05 Feb 2016, Accepted 01 Oct 2016, Published online: 17 Oct 2016

References

  • Wang JL, Liu P, Qian Y. Microbial degradation of di-butyl phthlate. Chemosphere. 1995;31:4051–4056. doi: 10.1016/0045-6535(95)00282-D
  • Wang JL, Liu P, Shi HC, et al. Kinetics of phthlic acid ester degradation by acclimated activated sludge. Process Biochem. 1997;32:567–571. doi: 10.1016/S0032-9592(97)00015-0
  • Wang JL, Liu P, Qian Y. Biodegradation of phthlic acid esters by immobilized microbial cells. Environ Int. 1996;22(2):737–741. doi: 10.1016/S0160-4120(96)00065-7
  • Zhao XK, Yang GP, Wang YJ. Adsorption of dimethyl phthalate on marine sediments. Water Air Soil Pollut. 2004;157(1):179–192. doi: 10.1023/B:WATE.0000038880.57430.c3
  • Zhao X, Yang G, Wang Y, et al. Photochemical degradation of dimethyl phthalate by Fenton reagent. J Photoch Photobio A Chem. 2004;161(23):215–220. doi: 10.1016/S1010-6030(03)00344-7
  • Huang R, Yan H, Li L, et al. Catalytic activity of Fe/SBA-15 for ozonation of dimethyl phthalate in aqueous solution. Appl Catal B Environ. 2011;106(1–2):264–271.
  • Wang Y, Liu Y, Liu T, et al. Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode. Appl Catal B Environ. 2014;156157:1–7. doi: 10.1016/j.apcatb.2014.02.041
  • Li L, Ye W, Zhang Q, et al. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon. J Hazard Mater. 2009;170(1):411–416. doi: 10.1016/j.jhazmat.2009.04.081
  • Ma J, Sui M, Zhang T, et al. Effect of pH on MnOx/GAC catalyzed ozonation for degradation of nitrobenzene. Water Res. 2005;39(5):779–786. doi: 10.1016/j.watres.2004.11.020
  • Ikhlaq A, Brown DR, Kasprzyk-Hordern B. Catalytic ozonation for the removal of organic contaminants in water on alumina. Appl Catal B Environ. 2015;165:408–418. doi: 10.1016/j.apcatb.2014.10.010
  • Turkay O, Inan H, Dimoglo A. Experimental and theoretical investigations of CuO-catalyzed ozonation of humic acid. Sep Purif Technol. 2014;134:110–116. doi: 10.1016/j.seppur.2014.07.040
  • Zhuang H, Han H, Hou B, et al. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts. Bioresource Technol. 2014;166:178–186. doi: 10.1016/j.biortech.2014.05.056
  • Zhang T, Li C, Ma J, et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone: property and activity relationship. Appl Catal B Environ. 2008;82(1-2):131–137. doi: 10.1016/j.apcatb.2008.01.008
  • Chen C, Yoza BA, Wang Y, et al. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O3 catalyst. Environ Sci Pollut Res. 2015;22(7):5552–5562. doi: 10.1007/s11356-015-4136-0
  • Lv A, Hu C, Nie Y, et al. Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions. Appl Catal B Environ. 2012;117-118:246–252. doi: 10.1016/j.apcatb.2012.01.020
  • Akhtar J, Amin NS, Aris A. Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using Fe2O3/CeO2 loaded activated carbon. Chem Eng J. 2011;170(1):136–144. doi: 10.1016/j.cej.2011.03.043
  • Gonçalves A, Órfão JJM, Pereira MFR. Ozonation of bezafibrate promoted by carbon materials. Appl Catal B Environ. 2013;140-141:82–91. doi: 10.1016/j.apcatb.2013.03.034
  • Ikhlaq A, Brown DR, Kasprzyk-Hordern B. Catalytic ozonation for the removal of organic contaminants in water on ZSM-5 zeolites. Appl Catal B Environ. 2014;154-155:110–122. doi: 10.1016/j.apcatb.2014.02.010
  • Alejandro S, Valdés H, Manéro M, et al. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics. J Hazard Mater. 2014;274:212–220. doi: 10.1016/j.jhazmat.2014.04.006
  • Faria PCC, Órfão JJM, Pereira MFR. Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon. Water Res. 2005;39(8):1461–1470. doi: 10.1016/j.watres.2004.12.037
  • Gonçalves AG, Figueiredo JL, Órfão JJM, et al. Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts. Carbon. 2010;48(15):4369–4381. doi: 10.1016/j.carbon.2010.07.051
  • Fan X, Restivo J, Órfão JJM, et al. The role of multiwalled carbon nanotubes (MWCNTs) in the catalytic ozonation of atrazine. Chem Eng J. 2014;241:66–76. doi: 10.1016/j.cej.2013.12.023
  • Kasprzyk-Hordern B, Ziółek M, Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B Environ. 2003;46(4):639–669. doi: 10.1016/S0926-3373(03)00326-6
  • Nawrocki J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation. Appl Catal B Environ. 2010;99(1-2):27–42. doi: 10.1016/j.apcatb.2010.06.033
  • Chen Y, Ai Z, Zhang L. Enhanced decomposition of dimethyl phthalate via molecular oxygen activated by Fe@Fe2O3/AC under microwave irradiation. J Hazard Mater. 2012;235-236:92–100. doi: 10.1016/j.jhazmat.2012.07.015
  • Lamaa C, Jamesa J, McCluskeyb R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006;36(3):189–217. doi: 10.1080/10408440600570233
  • Xu LJ, Wang JL. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ Sci Technol. 2012;46(8):10145–10153. doi: 10.1021/es300303f
  • Zhang S, Zhao X, Niu H, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J Hazard Mater. 2009;167(1-3):560–566. doi: 10.1016/j.jhazmat.2009.01.024
  • Xu LJ, Wang JL. Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl Catal B Environ. 2012;123-124:117–126. doi: 10.1016/j.apcatb.2012.04.028
  • Deng J, Wen X, Wang Q. Solvothermal in situ synthesis of Fe3O4-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity. Mater Res Bull. 2012;47(11):3369–3376. doi: 10.1016/j.materresbull.2012.07.021
  • Hu X, Liu B, Deng Y, et al. Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Appl Catal B Environ. 2011;107(3-4):274–283. doi: 10.1016/j.apcatb.2011.07.025
  • Bai ZY, Yang Q, Wang JL. Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid. Int J Environ Sci Technol. 2016;13(2):483–492. doi: 10.1007/s13762-015-0881-3
  • Recillas S, García A, González E, et al. Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water. Desalination. 2011;277(13):213–220. doi: 10.1016/j.desal.2011.04.036
  • Souza FL, Sáez C, Cañizares P, et al. Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. Appl Catal B Environ. 2014;144:121–128. doi: 10.1016/j.apcatb.2013.07.003
  • Bader H, Sturzenegger V, Hoigné J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenedia-Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res. 1988;22(9):1109–1115. doi: 10.1016/0043-1354(88)90005-X
  • Seo S, Lee G, Kim D. Enhanced electroactivity with Li in Fe3O4/MWCNT nanocomposite electrodes. J Alloy Compd. 2014;615:S397–S400. doi: 10.1016/j.jallcom.2014.01.077
  • Wang H, Jiang H, Wang S, et al. Fe3O4–MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Adv. 2014;4(86):45809–45815. doi: 10.1039/C4RA07327D
  • Ren Y, Dong Q, Feng J, et al. Magnetic porous ferrospinel NiFe2O4: a novel ozonation catalyst with strong catalytic property for degradation of di-n-butyl phthalate and convenient separation from water. J Colloid Inter Sci. 2012;382(1):90–96. doi: 10.1016/j.jcis.2012.05.053
  • Zhao H, Dong Y, Wang G, et al. Novel magnetically separable nanomaterials for heterogeneous catalytic ozonation of phenol pollutant: NiFe2O4 and their performances. Chem Eng J. 2013;219:295–302. doi: 10.1016/j.cej.2013.01.019
  • Xing S, Zhou Z, Ma Z, et al. Characterization and reactivity of Fe3O4/FeMnOx core/shell nanoparticles for methylene blue discoloration with H2O2. Appl Catal B Environ. 2011;107(3-4):386–392. doi: 10.1016/j.apcatb.2011.08.002
  • Wen G, Ma J, Liu Z, et al. Ozonation kinetics for the degradation of phthalate esters in water and the reduction of toxicity in the process of O3/H2O2. J Hazard Mater. 2011;195:371–377. doi: 10.1016/j.jhazmat.2011.08.054
  • Gamard A, Babot O, Jousseaume B, et al. Conductive F-doped tin dioxide sol−gel materials from fluorinated β-diketonate Tin(IV) complexes. Ch Therm Behav Chem Mater. 2000;12(11):3419–3426.
  • Zhao H, Dong Y, Jiang P, et al. An insight into the kinetics and interface sensitivity for catalytic ozonation: the case of nano-sized NiFe2O4. Catal Sci Technol. 2014;4(2):494–501. doi: 10.1039/C3CY00674C
  • Jiang W, Joens JA, Dionysiou DD, et al. Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate. J Photoch Photobio A Chem. 2013;262:7–13. doi: 10.1016/j.jphotochem.2013.04.008
  • Huang Z, Wu P, Lu Y, et al. Enhancement of photocatalytic degradation of dimethyl phthalate with nano-TiO2 immobilized onto hydrophobic layered double hydroxides: a mechanism study. J Hazard Mater. 2013;246-247:70–78. doi: 10.1016/j.jhazmat.2012.12.016
  • Xu LJ, Chu W, Graham N. A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process. Ultrason Sonochem. 2013;20(3):892–899. doi: 10.1016/j.ultsonch.2012.11.005
  • Souza FL, Aquino JM, Irikura K, et al. Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/β-PbO2 anode. Chemosphere. 2014;109:187–194. doi: 10.1016/j.chemosphere.2014.02.018
  • Wang JL, Xu LJ. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol. 2012;42(3):251–325. doi: 10.1080/10643389.2010.507698
  • Huang Y, Cui C, Zhang D, et al. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon. Chemosphere. 2015;119:295–301. doi: 10.1016/j.chemosphere.2014.06.060
  • Von Gunten U. Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res. 2003;37:1443–1467. doi: 10.1016/S0043-1354(02)00457-8
  • Qin H, Chen H, Zhang X, et al. Efficient degradation of fulvic acids in water by catalytic ozonation with CeO2/AC. J Chem Technol Biotechnol. 2014;89(9):1402–1409. doi: 10.1002/jctb.4222
  • Sauleda RBE. Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light. Appl Catal B Environ. 2001;29(2):135–145. doi: 10.1016/S0926-3373(00)00197-1
  • Zhao L, Sun Z, Ma J. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution. Environ Sci Technol. 2009;43(11):4157–4163. doi: 10.1021/es900084w
  • Yang Y, Cao H, Peng P, et al. Degradation and transformation of atrazine under catalyzed ozonation process with TiO2 as catalyst. J Hazard Mater. 2014;279:444–451. doi: 10.1016/j.jhazmat.2014.07.035
  • Andreozzi R, Caprio V, Insola A, et al. Advanced oxidation processes (AOP) for water purification and recovery. Catal Today. 1999;53(1):51–59. doi: 10.1016/S0920-5861(99)00102-9
  • Gary L, Schmitt DJP. Liquid chromatographic separation of inorganic anions on an alumina column. Anal chem. 1985;57:2247–2253. doi: 10.1021/ac00289a017
  • Ziylan A, Ince NH. Catalytic ozonation of ibuprofen with ultrasound and Fe-based catalysts. Catal Today. 2015;240(1):2–8. doi: 10.1016/j.cattod.2014.03.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.