282
Views
9
CrossRef citations to date
0
Altmetric
Articles

Ecotoxicological assessment of dewatered drinking water treatment residue for environmental recycling

ORCID Icon, ORCID Icon, &
Pages 2241-2252 | Received 30 May 2016, Accepted 27 Oct 2016, Published online: 18 Nov 2016

References

  • Wang CH, Jiang HL. Chemicals used for in situ immobilization to reduce the internal phosphorus loading from lake sediments for eutrophication control. Crit Rev Env Sci Tec. 2016;46:947–997. doi: 10.1080/10643389.2016.1200330
  • Babatunde AO, Zhao YQ. Constructive approaches towards water treatment works sludge management: an international review of beneficial re-uses. Crit Rev Environ Sci Technol. 2007;37:129–164. doi: 10.1080/10643380600776239
  • Ippolito JA, Barbarick KA, Elliott HA. Drinking water treatment residuals: a review of recent uses. J Environ Qual. 2011;40:1–12. doi: 10.2134/jeq2010.0242
  • Dassanayake KB, Jayasinghe GY, Surapaneni A, et al. A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Manage. 2015;38:321–335. doi: 10.1016/j.wasman.2014.11.025
  • Punamiya P, Sarkar D, Rakshit S, et al. Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals. Environ Sci Pollut Res. 2015;22:7508–7518. doi: 10.1007/s11356-015-4145-z
  • Zhao YQ, Babatunde AO, Hu YS, et al. Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochem. 2011;46:278–283. doi: 10.1016/j.procbio.2010.08.023
  • Agyin-Birikorang S, Oladeji OO, O’Connor GA, et al. Efficacy of drinking-water treatment residual in controlling off-site phosphorus losses: a field study in Florida. J Environ Qual. 2009;38:1076–1085. doi: 10.2134/jeq2008.0383
  • Makris KC, Sarkar D, Salazar J, et al. Alternative amendment for soluble phosphorus removal from poultry litter. Environ Sci Pollut Res. 2010;17:195–202. doi: 10.1007/s11356-009-0132-6
  • Wang CH, Qi Y, Pei YS. Laboratory investigation of phosphorus immobilization in lake sediments using water treatment residuals. Chem Eng J. 2012;209:379–385. doi: 10.1016/j.cej.2012.08.003
  • Ichihara M, Nishio T. Suppression of phosphorus release from sediments using water clarifier sludge as capping material. Environ Technol. 2013;34:2291–2299. doi: 10.1080/09593330.2013.765924
  • Wang CH, Bai LL, Pei YS, et al. Comparison of metals extractability from Al/Fe-based drinking water treatment residuals. Environ Sci Pollut Res. 2014;21:13528–13538. doi: 10.1007/s11356-014-3300-2
  • Wang CH, Yuan NN, Pei YS. Effect of pH on metal lability in drinking water treatment residuals. J Environ Qual. 2014;43:389–397. doi: 10.2134/jeq2013.06.0233
  • Wang CH, Yuan NN, Pei YS. An anaerobic incubation study of metal lability in drinking water treatment residue with implications for practical reuse. J Hazard Mater. 2014;274:342–348. doi: 10.1016/j.jhazmat.2014.04.037
  • George DB, Berk SG, Adams VD, et al. Toxicity of alum sludge extracts to a freshwater alga, protozoan, fish, and marine bacterium. Arch Environ Contam Toxicol. 1995;29:149–158.
  • Kaggwa RC, Mulalelo CI, Denny P, et al. The impact of alum discharges on a natural tropical wetland in Uganda. Water Res. 2001;35:795–807. doi: 10.1016/S0043-1354(00)00301-8
  • Muisa N, Hoko Z, Chifamba P. Impacts of alum residues from morton jaffray water works on water quality and fish, Harare, Zimbabwe. Phys Chem Earth. 2011;36:853–864. doi: 10.1016/j.pce.2011.07.047
  • Skene TM, Oades JM, Kilmore G. Water-treatment sludge – A potential plant growth medium. J Soil Use Manage. 1995;11:29–33. doi: 10.1111/j.1475-2743.1995.tb00492.x
  • Sotero-Santos RB, Rocha O, Povinelli J. Toxicity of ferric chloride sludge to aquatic organisms. Chemosphere. 2007;68:628–636. doi: 10.1016/j.chemosphere.2007.02.049
  • Wang CH, Pei YS, Zhao YQ. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals. J Environ Sci Health A. 2015;50:135–143. doi: 10.1080/10934529.2015.975054
  • Suman TY, Radhika Rajasree SR, Kirubagaran R. Evaluation of zinc oxide nanoparticles toxicity on marine algae chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotox Environ Safe. 2015;113:23–30. doi: 10.1016/j.ecoenv.2014.11.015
  • Long ZF, Ji J, Yang K, et al. Systematic and quantitative investigation of the mechanism of carbon nanotubes’ toxicity toward algae. Environ Sci Technol. 2012;46:8458–8466. doi: 10.1021/es301802g
  • Stiernström S, Hemström K, Wik O, Carlsson G, Bengtsson B-E, Breitholtz M. An ecotoxicological approach for hazard identification of energy ash. Waste Manage. 2011;31:342–352. doi: 10.1016/j.wasman.2010.05.019
  • Mamindy-Pajany Y, Libralato G, Roméo M, et al. Ecotoxicological evaluation of Mediterranean dredged sediment ports based on elutriates with oyster embryotoxicity tests after composting process. Water Res. 2010;44:1986–1994. doi: 10.1016/j.watres.2009.11.056
  • Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–36. doi: 10.1016/S0003-2670(00)88444-5
  • American Public Health Association (APHA). American Water Works Association, Water Environmental Federation. Standard methods for the examination of water and wastewater. Washington (DC): APHA; 2005.
  • Goldman E, Jacobs R. Determination of nitrates by ultraviolet absorption. J Am Water Works Ass. 1961;53:187–191.
  • Saltzman BE. Colorimetric microdetermination of nitrogen dioxide in atmosphere. Anal Chem. 1954;26:1949–1955. doi: 10.1021/ac60096a025
  • Xiong B, Zhang W, Chen L, et al. Effects of Pb (II) exposure on chlorella protothecoides and chlorella vulgaris growth, malondialdehyde, and photosynthesis-related gene transcription. Environ Toxicol. 2014;29:1346–1354.
  • Qian HF, Li J, Pan XJ, et al. Analyses of gene expression and physiological changes in microcystis aeruginosa reveal the phytotoxicities of three environmental pollutants. Ecotoxicology. 2012;21:847–859. doi: 10.1007/s10646-011-0845-4
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73
  • Eixler S, Karsten U, Selig U. Phosphorus storage in chlorella vulgaris (trebouxiophyceae, chlorophyta) cells and its dependence on phosphate supply. Phycologia. 2006;45:53–60. doi: 10.2216/04-79.1
  • Elser JJ, Marzolf ER, Goldman CR. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: A review and critique of experimental enrichments. Can J Fish Aquat Sci. 1990;47:1468–1477. doi: 10.1139/f90-165
  • U.S. Environmental Protection Agency (U.S. EPA). National recommended water quality criteria. Washington (DC): U.S. EPA; 2006.
  • Franklin NM, Stauber JL, Apte SC, et al. Effect of initial cell density on the bioavailability and toxicity of copper in microalgal bioassays. Environ Toxicol Chem. 2002;21:742–751. doi: 10.1002/etc.5620210409
  • Tam NFY, Wong YS. Effect of ammonia concentrations on growth of chlorella vulgaris and nitrogen removal from media. Bioresource Technol. 1996;57:45–50. doi: 10.1016/0960-8524(96)00045-4
  • Xin L, Hong-ying H, Ke G, et al. Growth and nutrient removal properties of a freshwater microalga scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecol Eng. 2010;36:379–381. doi: 10.1016/j.ecoleng.2009.11.003
  • Hull MS, Kennedy AJ, Steevens JA, Bednar AJ, Weiss CA Jr, Vikesland PJ. Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ Sci Technol. 2009;43:4169–4174. doi: 10.1021/es802483p
  • Liu L, Zhu B, Wang GX. Azoxystrobin-induced excessive Reactive Oxygen Species (ROS) production and inhibition of photosynthesis in the unicellular Green algae chlorella vulgaris. Environ Sci Pollut Res. 2015;22:7766–7775. doi: 10.1007/s11356-015-4121-7
  • Ball SG, Dirick L, Decq A, et al. Physiology of starch storage in the monocelluar alga chlamydomonas reinhardtii. Plant Sci. 1990;66:1–9. doi: 10.1016/0168-9452(90)90162-H
  • Van Straalen NM, Feder ME. Ecological and evolutionary functional genomics – How can it contribute to the risk assessment of chemicals? Environ Sci Technol. 2012;46:3–9. doi: 10.1021/es2034153

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.