501
Views
20
CrossRef citations to date
0
Altmetric
Articles

Biodegradation of low and high molecular weight hydrocarbons in petroleum refinery wastewater by a thermophilic bacterial consortium

, , , , &
Pages 2381-2391 | Received 17 Jul 2016, Accepted 14 Nov 2016, Published online: 05 Dec 2016

References

  • Fardeau ML, Bonilla SM, L’Haridon S, et al. Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, thermoanaerobacter yonseiensis Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaaerobacter subterraneus gen. nov., sp. nov., comb. Nov. as four novel subspecies. Int J Syst Evol Microbiol. 2004;54:467–474. doi: 10.1099/ijs.0.02711-0
  • Zheng C, He J, Wang Y, et al. Hydrocarbon degradation and bioemulsifier production by thermophilic pallidus strains. Biores Technol. 2011;102:9155–9161. doi: 10.1016/j.biortech.2011.06.074
  • Abed RMM, Al-Thukair A, de Beer D. Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol. 2006;57:290–301. doi: 10.1111/j.1574-6941.2006.00113.x
  • Iqbal J, Metosh-Dickey C, Portier RJ. Temperature effects on bioremediation of PAHs and PCP contaminated south Louisiana soils: a laboratory mesocosm study. J Soils Sediments. 2007;7(3):153–158. doi: 10.1065/jss2007.01.204
  • Leahy JG, Colwell RR. Microbial degradation of hydrocarbons in the environment. Microbiol Rev. 1990;54:305–315.
  • Lapara TM, Allenman JE. Thermophilic aerobic biological wastewater treatment. Water Res. 1999;33:895–908. doi: 10.1016/S0043-1354(98)00282-6
  • Viamajala S, Peyton BM, Richards LA, et al. Solubilization, solution equilibria, and biodegradation of PAH’s under thermophilic conditions. Chemosphere. 2007;66:1094–1106. doi: 10.1016/j.chemosphere.2006.06.059
  • Zhao Z, Selvam A, Wong JW. Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03 on the biodegradation of phenanthrene in bioslurry system. J Haz Mat. 2011;190:345–350. doi: 10.1016/j.jhazmat.2011.03.042
  • Obuekwe CO, Al-Jadi ZK, Al-Saleh ES. Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int Biodeter Biodeg. 2009;63:273–279. doi: 10.1016/j.ibiod.2008.10.004
  • Johnsen AR, Wick LY, Harms H. Principles of microbial PAH degradation in soil. Environ Poll. 2005;133:71–84. doi: 10.1016/j.envpol.2004.04.015
  • Bodour AA, Maier RM. Biosurfactants: types, screening methods, and applications. In: Bitton G, editor. Encyclopedia of environmental microbiology. Hoboken (NJ): Wiley; 2002. p. 750–770.
  • Wick LY, Ruiz de Munain A, Springael D, et al. Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol. 2002;58(5):378–385.
  • Al-Tahhan RA, Sandrin TR, Bodour AA, et al. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol. 2000;66:3262–3268. doi: 10.1128/AEM.66.8.3262-3268.2000
  • Zhong H, Zeng GM, Yuan XZ, et al. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol. 2007;77:447–455. doi: 10.1007/s00253-007-1154-y
  • Wong JW, Fang M, Zhao Z, et al. Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. J Environ Qual. 2004;33(6):2015–2025. doi: 10.2134/jeq2004.2015
  • Meintanis C, Chalkou KI, Kormas KA, et al. Biodegradation of crude oil by thermophilic bacteria isolated from a volcano island. Biodegradation. 2006;17(2):105–111. doi: 10.1007/s10532-005-6495-6
  • Singh A, Kumar K, Pandey AK, et al. Pyrene degradation by biosurfactant producing bacterium Stenotrophomonas maltophilia. Agri Res. 2015;4(1):42–47. doi: 10.1007/s40003-014-0144-4
  • Zeinali M, Vossoughi M, Ardestani SK. Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere. 2008;72:905–909. doi: 10.1016/j.chemosphere.2008.03.038
  • Kiyohara H, Nagao K, Yana K. Rapid screen for bacteria degrading water insoluble solid hydrocarbons on agar plates. Appl Environ Microbiol. 1982;43:454–457.
  • Arulazhagan P, Vasudevan N. Role of moderately halophilic bacterial consortium in biodegradation of polyaromatic hydrocarbons. Mar Poll Bull. 2009;58:256–262. doi: 10.1016/j.marpolbul.2008.09.017
  • American Public Health Association (APHA). Standard methods for the examination of water and wastewater. 21st ed. Washington (DC): American Public Health Association; 2005.
  • Arulazhagan P, Vasudevan N, Yeom IT. Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int J Environ Sci Technol. 2010;7(4):639–652. doi: 10.1007/BF03326174
  • Wang Y, Qian PY. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One. 2009;4(10):e7401. doi: 10.1371/journal.pone.0007401
  • Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13
  • Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09
  • Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381
  • Cheng KY, Lai KM, Wong JWC. Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere. 2008;73:791–797. doi: 10.1016/j.chemosphere.2008.06.005
  • Trably E, Patureau D, Delgenes JP. Enhancement of polycyclic aromatic hydrocarbons removal during anaerobic treatment of urban sludge. Water Sci Technol. 2003;48(4):53–60.
  • Solano-Serena F, Marchal R, Ropars M, et al. Biodegradation of gasoline: kinetics, mass balance and fate of individual hydrocarbons. J Appl Microbiol. 1999;86(6):1008–1016. doi: 10.1046/j.1365-2672.1999.00782.x
  • Bouchez M, Blanchet D, Vandecasteele JP. The microbiological fate of polycyclic aromatic hydrocarbons: carbon and oxygen balances for bacterial degradation of model compounds. Appl Microbiol Biotechnol. 1996;45(4):556–561. doi: 10.1007/BF00578471
  • Penet S, Marchal R, Sghir A, et al. Biodegradation of hydrocarbon cuts used for diesel oil formulation. Appl Microbiol Biotechnol. 2004;66(1):40–47. doi: 10.1007/s00253-004-1660-0
  • Keum YS, Seo JS, Li QX. Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene. Appl Microbiol Biotechnol. 2008;80(5):863–872. doi: 10.1007/s00253-008-1581-4
  • Zeinali M, Vossoughi M, Ardestani SK. Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium. J Appl Microbiol. 2008;105(2):398–406. doi: 10.1111/j.1365-2672.2008.03753.x
  • Tao Y, Bentley WE, Wood TK. Regiospecific oxidation of naphthalene and fluorene by toluene monooxygenases and engineered toluene 4-monooxygenases of Pseudomonas mendocina KR1. Biotechnol Bioeng. 2005;90(1):85–94. doi: 10.1002/bit.20414
  • Schneider J, Grosser R, Jayasimhulu K, et al. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Microbiol Biotechnol. 1996;62(1):13–19.
  • Liang Y, Gardner DR, Miller CD, et al. Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microbiol. 2006;72(12):7821–7828. doi: 10.1128/AEM.01274-06
  • Rentz JA, Alvarez PJ, Schnoor JL. Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environ Poll. 2008;151(3):669–677. doi: 10.1016/j.envpol.2007.02.018
  • Maeda AH, Nishi S, Hatada Y, et al. Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry. Microbial Biotechnol. 2014;7(2):114–129. doi: 10.1111/1751-7915.12102
  • Desai JD, Banat IM. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev. 1997;61(1):47–64.
  • Guerin WF, Boyd SA. Bioavailability of naphthalene associated with natural and synthetic sorbents. Water Res. 1997;31(6):1504–1512. doi: 10.1016/S0043-1354(96)00402-2
  • Harms H, Smith KEC, Wick LY. Microorganism-hydrophobic compound interactions. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzo V, editors. Handbook of hydrocarbon and lipid microbiology. Berlin (Germany): Springer; 2010. p. 1479–1490.
  • Mohanty G, Mukherji S. Enhancement of NAPL bioavailability by induction of cell-surface hydrophobicity in Exiguobacterium aurantiacum and Burkholderia cepacia. Ind J Biotechnol. 2008;7(3):295–306.
  • Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J Haz Mat. 2009;169(1–3):1–15. doi: 10.1016/j.jhazmat.2009.03.137
  • Abdel-Shafy HIA, Mansour MSM. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyp J Petro. 2016;25(1):107–123. doi: 10.1016/j.ejpe.2015.03.011
  • Arulazhagan P, Sivaraman C, Kumar SA, et al. Co-metabolic degradation of benzo(e)pyrene by halophilic bacterial consortium at different saline conditions. J Env Bio. 2014;35(3):445–452.
  • Das K, Mukherjee AK. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability. J Appl Microbiol. 2007;102(1):195–203. doi: 10.1111/j.1365-2672.2006.03070.x
  • Vasudevan N, Bharathi S, Arulazhagan P. Role of plasmid in the degradation of petroleum hydrocarbon by Pseudomonas fluorescens NS1. J Environ Sci Health Part A. 2007;42(8):1141–1146. doi: 10.1080/10934520701418649
  • Okoro CC, Agrawal A, Callbeck C. Simultaneous biosurfactant production and hydrocarbon biodegradation by the resident aerobic bacterial flora of oil production skimmer pit at elevated temperature and saline conditions. Int J Ecol Environ Sci. 2012;38(2–3):109–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.