372
Views
16
CrossRef citations to date
0
Altmetric
Articles

Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs

ORCID Icon &
Pages 2709-2724 | Received 21 Oct 2015, Accepted 05 Jun 2016, Published online: 10 Jan 2017

References

  • Fytili D, Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods – a review. Renew Sustain Energy Rev. 2008;12:116–140. doi: 10.1016/j.rser.2006.05.014
  • Lu Q, He ZL, Stoffella PJ. Land application of biosolids in the USA : a review. Appl Environ Soil Sci. 2012; 2012:11. doi:10.1155/2012/201462.
  • Wang MJ. Land application of sewage sludge in China. Sci Total Environ. 1997;197:149–160. doi: 10.1016/S0048-9697(97)05426-0
  • Nogueira TAR, Franco A, He Z, et al. Short-term usage of sewage sludge as organic fertilizer to sugarcane in a tropical soil bears little threat of heavy metal contamination. J Environ Manage. 2003;114:168–177. doi: 10.1016/j.jenvman.2012.09.012
  • Yuan X, Huang H, Zeng G, et al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour Technol. 2011;102(5):4104–4110. doi: 10.1016/j.biortech.2010.12.055
  • Kim IS, Lee JU, Jang A. Bioleaching of heavy metals from dewatered sludge by acidithiobacillus ferrooxidans. J Chem Technol Biotechnol. 2005;80:1339–1348. doi: 10.1002/jctb.1330
  • Pathak A, Dastidar MG, Sreekrishnan TR. Bioleaching of heavy metals from sewage sludge: a review. J Environ Manage. 2009;90:2343–2353. doi: 10.1016/j.jenvman.2008.11.005
  • Dai JY, Chen L, Zhao JF, et al. Characteristics of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge. J Environ Sci. 2006;18:1094–1100. doi: 10.1016/S1001-0742(06)60045-4
  • Tyagi RD, Tran FT, Agbebavi TJ. Mesophilic and thermophilic aerobic digestion of municipal sludge in an airlift U-shape bioreactor. Biological Wastes. 1990;31:251–266. doi: 10.1016/0269-7483(90)90083-5
  • Lawton GW, Norman JD, Gerald W. Aerobic sludge digestion studies. Journal (Water Pollution Control Federation). 1964;36(4):495–504.
  • Narayanan R, Sreekrishnan TR. A two-stage process for simultaneous thermophilic sludge digestion, pathogen control and metal leaching. Environ Technol. 2009;30:21–26. doi: 10.1080/09593330802422514
  • Wen Y, Cheng Y, Tang C, et al. Bioleaching of heavy metals from sewage sludge using indigenous iron-oxidizing microorganisms. J Soils Sediments. 2013;13:166–175. doi: 10.1007/s11368-012-0580-3
  • Tyagi RD, Tran FT. Microbial leaching of metals from digested sewage sludge in continuous system. Environ Technol. 1991;12(4):303–312. doi: 10.1080/09593339109385010
  • Tyagi RD, Couillard D, Tran F. Heavy metals removal from anaerobically digested sludge by chemical and microbiological methods. Environ Pollut. 1988;50:295–316. doi: 10.1016/0269-7491(88)90194-7
  • Bosecker K. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev. 1997;20:591–604. doi: 10.1111/j.1574-6976.1997.tb00340.x
  • Blais JF, Tyagi RD, Auclair JC. Bioleaching of metals from sewage sludge : microorganisms and growth kinetics. Water Res. 1993;27(1):101–110. doi: 10.1016/0043-1354(93)90200-2
  • Blais JF, Meunier N, Mercier G, et al. Pilot plant study of simultaneous sewage sludge digestion and metal leaching. J Environ Eng. 2004;130(5):516–525. doi: 10.1061/(ASCE)0733-9372(2004)130:5(516)
  • Meknassi FY, Tyagi RD, Narasiah KS. Simultaneous sewage sludge digestion and metal leaching: effect of aeration. Process Biochem. 2000;36:263–273. doi: 10.1016/S0032-9592(00)00213-2
  • Benmoussa H, Tyagi RD, Campbell PGC. Simultaneous sewage sludge digestion and metal leaching using an internal loop reactor. Water Res. 1997;31:638–2654. doi: 10.1016/S0043-1354(97)00112-7
  • Liu W, Chan O, Fang HHP. Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res. 2002;36:3203–3210. doi: 10.1016/S0043-1354(02)00022-2
  • Liu S, Song F, Zhu N, et al. Chemical and microbial changes during autothermal thermophilic aerobic digestion (ATAD) of sewage sludge. Bioresour Technol. 2010;101:9438–9444. doi: 10.1016/j.biortech.2010.07.064
  • Piterina AV, Pembroke JT. Use of PCR-DGGE based molecular methods to analyse microbial community diversity and stability during the thermophilic stages of an ATAD wastewater sludge treatment process as an aid to performance monitoring. ISRN Biotechnology. 2013; 2013:13. doi:10.5402/2013/162645.
  • Shin SG, Lee S, Lee C, et al. Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresour Technol. 2010;101(24):9461–9470. doi: 10.1016/j.biortech.2010.07.081
  • Boon N, Windt WD, Verstraete W, et al. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol. 2002;39:101–112.
  • APHA, AWWA, and WEF. Standard methods for the examination of water and wastewater, 20th edn. 1999. USA: APHA, AWWA AND WEF.
  • Blais JF, Meunier N, Tyagi RD. Simultaneous sewage sludge digestion and metal leaching at controlled pH. Environ Technol. 1997;18(5):499–508. doi: 10.1080/09593331808616565
  • Moses CO, Herlihy AT, Herman JS, et al. Ion-chromatographic analysis of mixtures of ferrous and ferric iron. Talanta. 1988;35(1):15–22. doi: 10.1016/0039-9140(88)80005-5
  • Muyzer G, de Waal EC , Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.
  • Kumar S, Tamura K, Nei M. MEGA3 : integrated software for molecular evolutionary genetics analysis and sequence alignment. 2004;5(2):150–163.
  • Schauer M, Massana R, Pedrôs-Alio C. Spatial differences in bacterioplankton composition along the Catalan coast (NW Mediterranean) assessed by molecular fingerprinting. FEMS Microbiol Ecol. 2000;33:51–59. doi: 10.1111/j.1574-6941.2000.tb00726.x
  • Deinhard G, Saar J, Krischke W, et al. Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing ω-cycloheptane fatty acids. Syst Appl Microbiol. 1987;10(1):68–73. doi: 10.1016/S0723-2020(87)80013-9
  • Guay R, Silver M. Thiobacillus acidophilus sp. nov.; isolation and some physiological characteristics. Can J Microbiol. 1975;21(3):281–288. doi: 10.1139/m75-040
  • Kusube M, Sugihara A, Moriwaki Y, et al. Alicyclobacillus cellulosilyticus sp. nov., a thermophilic, cellulolytic bacterium isolated from steamed Japanese cedar chips from a lumbermill. Int J Syst Evol Microbiol. 2014;64(7):2257–2263. doi: 10.1099/ijs.0.061440-0
  • Ivanova AE, Kizilova AK, Kravchenko IK, et al. A hydrocarbon oxidizing acidophilic thermotolerant bacterial association from sulfur blocks. Microbiology. 2013;82(4):482–489. doi: 10.1134/S0026261713040048
  • Jiang CY, Liu Y, Liu YY, et al. Alicyclobacillus ferrooxydans sp. nov., a ferrous-oxidizing bacterium from solfataric soil. Int J Syst Evol Microbiol. 2008;58:2898–2903. doi: 10.1099/ijs.0.2008/000562-0
  • Okamura K, Kawai A, Yamada T, et al. Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum acidobacteria. FEMS Microbiol Lett. 2011;317:138–142. doi: 10.1111/j.1574-6968.2011.02224.x
  • Johnson DB, Bacelar-Nicolau P, Okibe N, et al. Ferrimicrobium acidiphilum gen. nov., sp. nov. and ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol. 2009;59:1082–1089. doi: 10.1099/ijs.0.65409-0
  • Kishimoto N, Kosako Y, Tano T. Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol. 1991;22:1–7. doi: 10.1007/BF02106205
  • Niu K, Zhang X, Tan WS, et al. Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Int J Hydrogen Energy. 2010;35:71–80. doi: 10.1016/j.ijhydene.2009.10.071
  • Aizawa T, Vijarnsorn P, Nakajima M. Burkholderia bannensis sp. nov., an acid-neutralizing bacterium isolated from torpedo grass (Panicum repens) growing in highly acidic swamps. Int J Syst Evol Microbiol. 2011;1645–1650. doi: 10.1099/ijs.0.026278-0
  • Okabe S, Odagiri M, Ito T, et al. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Appl Environ Microbiol. 2007;73(3):971–980. doi: 10.1128/AEM.02054-06
  • Ravishankar BR, Blais JF, Benmoussa H, et al. Bioleaching of metals from sewage sludge: elemental sulfur recovery. J Environ Eng. 1994;120(2):462–470. doi: 10.1061/(ASCE)0733-9372(1994)120:2(462)
  • Jenkins RL, Scheybeler BJ, Smith ML, et al. Metals removal and recovery from municipal sludge. J Water Pollut Control Fed. 1981;53:25–32.
  • USDA NRCS. Heavy metal soil contamination. Soil Quality-Urban Technical Note No. 3. USA: USDA and NRCS.
  • Beolchini F, Dell A, Propris LD, et al. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere. 2009;74(10):1321–1326. doi: 10.1016/j.chemosphere.2008.11.057
  • Berthelot D, Leduc LG, Ferroni GD. Iron-oxidizing autotrophs and acidophilic heterotrophs from uranium mine environments. Geomicrobiol J. 1997;14(4):317–324. doi: 10.1080/01490459709378055
  • Fournier D, Lemieux R, Couillard D. Essential interactions between thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process. Environ Pollut. 1998;101(2):303–309. doi: 10.1016/S0269-7491(98)00035-9
  • Wong JWC, Xiang L, Gu XY, et al. Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source. Chemosphere. 2004;55:101–107. doi: 10.1016/j.chemosphere.2003.11.022
  • Fang D, Zhou LX. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor. Chemosphere. 2007;69(2):303–310. doi: 10.1016/j.chemosphere.2007.03.059
  • Gu XY, Wong JWC. Characterization of an indigenous iron-oxidizing bacterium and its effectiveness in bioleaching heavy metals from anaerobically digested sewage sludge. Environ Technol. 2004;25(8):889–889. doi: 10.1080/09593330.2004.9619382

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.