430
Views
32
CrossRef citations to date
0
Altmetric
Articles

Environmentally friendly biosorbents (husks, pods and seeds) from Moringa oleifera for Pb(II) removal from contaminated water

, , , , &
Pages 3145-3155 | Received 09 Nov 2016, Accepted 28 Jan 2017, Published online: 17 Feb 2017

References

  • Gonçalves Junior AC, Meneghel AP, Rubio F, et al. Applicability of Moringa oleifera Lam. pie as an adsorbent for removal of heavy metals from waters. Revista Brasileira de Engenharia Agrícola e Ambiental. 2013;17(1):94–99. doi: 10.1590/S1415-43662013000100013
  • Tagliaferro GV, Pereira PHF, Rodrigues L, et al. Adsorção de chumbo, cádmio e prata em óxido de nióbio (V) hidratado preparado pelo método da precipitação em solução homogênea. Química Nova. 2011;34(1):101–105. doi: 10.1590/S0100-40422011000100020
  • USEPA. National primary drinking water regulations. U.S. Environmental Protection Agency; 1981.
  • WHO. World Health Organization, guidelines for drinking-water quality. Geneva: World Health Organization; 2011.
  • Wang J, Xia S, Yu L. Structure and bonding nature of [PbCl]+ adsorption on the kaolinite (001) surface in aqueous system. Appl Surf Sci. 2015;330:411–417. doi: 10.1016/j.apsusc.2015.01.003
  • Rao RA, Rehman F. Adsorption studies on fruits of gular (Ficus glomerata): removal of Cr (VI) from synthetic wastewater. J Hazard Mater. 2010;181(1):405–412. doi: 10.1016/j.jhazmat.2010.05.025
  • Kumar PS, Senthamarai C, Sai Deepthi ASL, et al. Adsorption isotherms, kinetics and mechanism of Pb (II) ions removal from aqueous solution using chemically modified agricultural waste. Can J Chem Eng. 2013;91(12):1950–1956. doi: 10.1002/cjce.21784
  • Reddy DHK, Seshaiah K, Reddy A, et al. Optimization of Cd (II), Cu (II) and Ni (II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydr Polym. 2012;88(3):1077–1086. doi: 10.1016/j.carbpol.2012.01.073
  • Bazanella G, Da Silva GF, Vieira AMS, et al. Fluoride removal from water using combined Moringa oleifera/ultrafiltration process. Water Air Soil Pollut. 2012;223(9):6083–6093. doi: 10.1007/s11270-012-1342-y
  • Moreno-Barbosa JJ, López-Velandia C, del Pilar Maldonado A, et al. Removal of lead (II) and zinc (II) ions from aqueous solutions by adsorption onto activated carbon synthesized from watermelon shell and walnut shell. Adsorption. 2013;19(2–4):675–685. doi: 10.1007/s10450-013-9491-x
  • Campas-Baypoli O, Sánchez-Machado D, Bueno-Solano C, et al. Biochemical composition and physicochemical properties of Moringa oleifera seed oil. Acta Alimentaria. 2014;43(4):538–546. doi: 10.1556/AAlim.2013.0003
  • Meneghel AP, Gonçalves AC Jr, Strey L, et al. Biosorption and removal of chromium from water by using moringa seed cake (Moringa oleifera Lam.). Química Nova. 2013; 36(8):1104–1110. doi: 10.1590/S0100-40422013000800005
  • Martín C, Moure A, Martín G, et al. Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenerg. 2010;34(4):533–538. doi: 10.1016/j.biombioe.2009.12.019
  • Reddy DHK, Ramana DKV, Seshaiah K, et al. Biosorption of Ni (II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination. 2011;268(1):150–157. doi: 10.1016/j.desal.2010.10.011
  • Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar. 1898;24:1–39.
  • Ho Y, Wase DJ, Forster C. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol. 1996;17(1):71–77. doi: 10.1080/09593331708616362
  • Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanitary Eng Div. 1963;89(2):31–60.
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40(9):1361–1403. doi: 10.1021/ja02242a004
  • Freundlich H. Over the adsorption in solution. J Phys Chem. 1906;57(385471):1100–1107.
  • Akhtar M, Hasany SM, Bhanger M, et al. Sorption potential of Moringa oleifera pods for the removal of organic pollutants from aqueous solutions. J Hazard Mater. 2007;141(3):546–556. doi: 10.1016/j.jhazmat.2006.07.016
  • Bello OS, Adegoke KA, Akinyunni OO. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Appl Water Sci. 2015;6(22):1–11.
  • Kawo A, Abdullahi B, Halilu A, et al. Preliminary phytochemical screening, proximate and elemental composition of Moringa oleifera Lam seed powder. Bayero J Pure Appl Sci. 2009;2(1):96–100.
  • Santana CR, Pereira DF, Araújo N, et al. Caracterização físico-química da Moringa (Moringa oleifera Lam). Revista Brasileira de Produtos Agroindustriais. 2010;12(1):55–60. doi: 10.15871/1517-8595/rbpa.v12n1p55-60
  • Goldberg S, Davis JA, Hem JD. The surface chemistry of aluminum oxides and hydroxides. In: Sposito G, editor. The enviromental chemistry of aluminum. 2nd ed. Boca Raton, FL: CRC Lewis Publishers; 1996.
  • Han R, Zhang L, Song C, et al. Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydr Polym. 2010;79(4):1140–1149. doi: 10.1016/j.carbpol.2009.10.054
  • Araújo CS, Carvalho DC, Rezende HC, et al. Bioremediation of waters contaminated with heavy metals using Moringa oleifera seeds as biosorbent. In: Yogesh BP, Prakash R, editors. Applied bioremediation—active and passive approaches. Croatia: InTech Open Science Online Publishers. 2013. p. 225–253.
  • Reddy DHK, Harinath Y, Seshaiah K, et al. Biosorption of Pb(II) from aqueous solutions using chemically modified Moringa oleifera tree leaves. Chem Eng J. 2010;162(2):626–634. doi: 10.1016/j.cej.2010.06.010
  • Pan J, Guan B. Adsorption of nitrobenzene from aqueous solution on activated sludge modified by cetyltrimethylammonium bromide. J Hazard Mater. 2010;183(1–3):341–346. doi: 10.1016/j.jhazmat.2010.07.030
  • Basu M, Guha AK, Ray L. Biosorptive removal of lead by lentil husk. J Environ Chem Eng. 2015;3(2):1088–1095. doi: 10.1016/j.jece.2015.04.024
  • Feng N, Guo X, Liang S. Adsorption study of copper (II) by chemically modified orange peel. J Hazard Mater. 2009;164(2):1286–1292. doi: 10.1016/j.jhazmat.2008.09.096
  • Ercan Ö, Aydin A. Removal of mercury, antimony, cadmium and lead from aqueous solution using 1, 3, 5-trithiane as an adsorbent. J Brazilian Chem Soc. 2013;24(5):865–872.
  • Coelho GF, Gonçalves AC Jr, Tarley CRT, et al. Removal of metal ions Cd (II), Pb (II), and Cr (III) from water by the cashew nut shell Anacardium occidentale L. Ecol Eng. 2014;73:514–525. doi: 10.1016/j.ecoleng.2014.09.103
  • Malathi S, Krishnaveni N, Sudha R. Adsorptive removal of lead (II) from an aqueous solution by chemically modified cottonseed cake. Res Chem Intermediat. 2016;42(3):2285–2302. doi: 10.1007/s11164-015-2149-4
  • Nordine N, El Bahri Z, Sehil H, et al. Lead removal kinetics from synthetic effluents using Algerian pine, beech and fir sawdust’s: optimization and adsorption mechanism. Appl Water Sci. 2014;6(4):1–10.
  • Abdeen Z, Mohammad S, Mahmoud M. Adsorption of Mn (II) ion on polyvinyl alcohol/chitosan dry blending from aqueous solution. Environ Nanotechnol Monit Manag. 2015;3:1–9. doi: 10.1016/j.enmm.2014.10.001
  • Kelleher BP, O’Callaghan MN, Leahy MJ, et al. The use of fly ash from the combustion of poultry litter for the adsorption of chromium (III) from aqueous solution. J Chem Technol Biotechnol. 2002;77(11):1212–1218. doi: 10.1002/jctb.689
  • Acharya J, Sahu J, Mohanty C, et al. Removal of lead (II) from wastewater by activated carbon developed from tamarind wood by zinc chloride activation. Chem Eng J. 2009;149(1):249–262. doi: 10.1016/j.cej.2008.10.029
  • Atkins P, de Paula J. Físico-Química. Rio de Janeiro: Editora LTC; 2008.
  • Schmal M. Cinética e reatores: aplicação na engenharia química: teoria e exercícios. Rio de Janeiro: Editora Synergia; 2010.
  • Karagöz S, Tay T, Ucar S, et al. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour Technol. 2008;99(14):6214–6222. doi: 10.1016/j.biortech.2007.12.019
  • Depci T, Kul AR, Önal Y. Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: study in single-and multi-solute systems. Chem Eng J. 2012;200–202:224–236. doi: 10.1016/j.cej.2012.06.077

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.