145
Views
4
CrossRef citations to date
0
Altmetric
Articles

Degradation of 2,4-dichlorophenoxyacetate isopropyl amine (2,4-D IPA) by O3/AC/UV in an internally slurry airlift photo-reactor

ORCID Icon & ORCID Icon
Pages 3180-3191 | Received 01 Jul 2016, Accepted 01 Feb 2017, Published online: 22 Feb 2017

References

  • Kundu S, Pal A, Dikshit AK. UV induced degradation of herbicide 2,4-D: kinetics, mechanism and effect of various conditions on the degradation. Sep Pur Technol. 2005;44:121–129. doi: 10.1016/j.seppur.2004.12.008
  • Hameed BH, Salman JM, Ahmad AL. Adsorption isotherm and kinetic modelling of 2,4-D pesticide on activated carbon derived from date stones. J Hazard Mater. 2009;163:121–126. doi: 10.1016/j.jhazmat.2008.06.069
  • Philip HH, Michalenko EM, Jarvis WF, et al. Handbook of environmental fate and exposure data for organic chemicals. Vol. III. Boca Raton (MI): Lewis, Chelsea; 1991.
  • Kilpi S, Backström V, Korhola M. Degradation of 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), benzoic acid and salicylic acid by pseudomonas sp. HV3. FEMS Microbiol Lett. 2006;8:177–182. doi: 10.1111/j.1574-6968.1980.tb05074.x
  • Chin H, Elefsiniotis P, Singhal N. Biodegradation of 2,4-dichlorophenoxyacetic acid using an acidogenic anaerobic sequencing batch reactor. J Environ Eng Sci. 2005;4:57–63. doi: 10.1139/s04-044
  • Tang L, Zhang S, Zeng GM, et al. Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon. J Colloid Interface Sci. 2015;445:1–8. doi: 10.1016/j.jcis.2014.12.074
  • Momcilovic MZ, Randelović MS, Zarubica AR, et al. SBA-15 templated mesoporous carbons for 2,4-dichlorophenoxyacetic acid removal. Chem Eng J. 2013;220:276–283. doi: 10.1016/j.cej.2012.12.024
  • Fontmorin JM, Huguet S, Fourcade F, et al. Electrochemical oxidation of 2,4-dichlorophenoxyacetic acid: analysis of by-products and improvement of the biodegradability. Chem Eng J. 2012;195–196:208–217. doi: 10.1016/j.cej.2012.04.058
  • Pei C, Chu W. The photocatalyic degradation and modelling of 2,4-dichlorophenoxyacetic acid by bismuth tungstate/peroxide. Chem Eng J. 2013;223:665–669. doi: 10.1016/j.cej.2013.02.125
  • Seck EI, Doña Rodríguez JM, Fernández Rodríguez C, et al. Photocatalytic removal of 2,4-dichlorophenoxyacetic acid by using sol-gel synthesized nanocrystalline and commercial TiO2: operational parameters optimization and toxicity studies. Appl Catal B Environ. 2012;125:28–34. doi: 10.1016/j.apcatb.2012.05.028
  • Chu W, Ching MH. Modelling the ozonation of 2,4-dichlorophoxyacetic acid through a kinetic approach. Water Res. 2003;37:39–46. doi: 10.1016/S0043-1354(02)00250-6
  • Chu W, Chan KH, Kwan CY. Modelling the ozonation of herbicide 2,4-D through a kinetic approach. Chemosphere. 2004;55:647–652. doi: 10.1016/j.chemosphere.2003.11.047
  • Kishimoto N, Nishimura H. Effect of pH and molar ratio of pollutant to oxidant on a photochemical advanced oxidation process using hypochlorite. Environ Technol. 2015;36:2436–2442. doi: 10.1080/09593330.2015.1034187
  • Mohajerani M, Mehrvar M, Ein-Mozaffari F. Using an external-loop airlift sonophotoreactor to enhance the biodegradability of aqueous sulfadiazine solution. Sep Pur Technol. 2012;90:173–181. doi: 10.1016/j.seppur.2012.02.025
  • Sanches S, BarretoCrespo MT, Pereira VJ. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Res. 2010;44:1809–1818. doi: 10.1016/j.watres.2009.12.001
  • Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment. I. Oxidation technologies at ambient conditions. Adv Environ Res. 2004;8:501–551. doi: 10.1016/S1093-0191(03)00032-7
  • Dai CM, Zhou XF, Zhang YL, et al. Comparative study of the degradation of carbamazepine in water by advanced oxidation processes. Environ Technol. 2012;33:1101–1109. doi: 10.1080/09593330.2011.610359
  • Lester Y, Avisar D, Mamane H. Photodegradation of the antibiotic sulphamethoxazole in water with UV/H2O2 advanced oxidation process. Environ Technol. 2010;31:175–183. doi: 10.1080/09593330903414238
  • Sayed M, Ismail M, Khan S, et al. Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways. Environ Technol. 2016;37:590–602. doi: 10.1080/09593330.2015.1075597
  • Piera E, Calpe JC, Brillas E, et al. 2,4-Dichlorophenoxyacetic acid degradation by catalyzed ozonation: TiO2/UVA/O3 and Fe(II)/UVA/O3 systems. Appl Catal B Environ. 2000;27:169–177. doi: 10.1016/S0926-3373(00)00149-1
  • Kwan CY, Chu W. Photodegradation of 2,4-dichlorophenoxyacetic acid in various iron-mediated oxidation systems. Water Res. 2003;37:4405–4412. doi: 10.1016/S0043-1354(03)00393-2
  • Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UV illumination technique VI. A simple modified domestic microwave oven integrating an electrodeless UV-Vis lamp to photodegrade environmental pollutants in aqueous media. J Photochem Photobiol A Chem. 2004;161:221–225. doi: 10.1016/j.nainr.2003.07.003
  • Matos J, Laine J, Herrmann JM. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. J Catal. 2001;200:10–20. doi: 10.1006/jcat.2001.3191
  • Faria PCC, Orfao JJM, Pereira MFR. Activated carbon catalytic ozonation of oxamic and oxalic acids. Appl Catal B Environ. 2008;79:237–243. doi: 10.1016/j.apcatb.2007.10.021
  • Guzman Perez CA, Soltan J, Robertson J. Kinetics of catalytic ozonation of atrazine in the presence of activated carbon. Sep Pur Technol. 2011;79:8–14. doi: 10.1016/j.seppur.2011.02.035
  • Alvarez PM, Garcıa Araya JF, Beltran FJ, et al. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon. 2006;44:3102–3112. doi: 10.1016/j.carbon.2006.03.016
  • Beltran FJ, Rivas J, Alvarez P, et al. Kinetics of heterogeneous catalytic ozone decomposition in water on an activated carbon. Ozone Sci Eng. 2002;24:227–237. doi: 10.1080/01919510208901614
  • Faria PCC, Orfao JJM, Pereira MFR. Ozone decomposition in water catalyzed by activated carbon: influence of chemical and textural properties. Ind Eng Chem Res. 2006;45:2715–2721. doi: 10.1021/ie060056n
  • Li M, Nakhla G, Zhu J. Simultaneous carbon and nitrogen removal with enhanced bioparticle circulation in a circulating fluidized bed biofilm reactor. Chem Eng J. 2012;181:35–44. doi: 10.1016/j.cej.2011.12.073
  • Roselei CF, Mauricio MS. Production of polygalacturonases by aspergillusoryzae in stirred tank and internal- and external-loop airlift reactors. Bioresour Technol. 2012;123:157–163. doi: 10.1016/j.biortech.2012.07.053
  • Lestinsky P, Vayrynen P, Vecer M, et al. Hydrodynamics of airlift reactor with internal circulation loop: experiment vs. CFD simulation. Procedia Engineering. 2012;42:892–907. doi: 10.1016/j.proeng.2012.07.482
  • Rakness K, Gordon G, Langlais B, et al. Guideline for measurement of ozone concentration in the process gas from an ozone generator. Ozone Sci Eng. 1996;18:209–229. doi: 10.1080/01919519608547327
  • Bader H, Hoigne J. Determination of ozone in water by the indigo method. Water Res. 1981;19:445–456.
  • Myers RH, Montgomery DC, Anderson Cook CM. Process and product optimization using designed experiments. 3rd ed. Hoboken (NJ): John Wiley; 2009.
  • Behin J, Farhadian N. Response surface methodology for ozonation of trifluralin using advanced oxidation processes in an airlift photoreactor. Appl Water Sci. 2016: 1–10.
  • Kumar A, Prasad B, Mishra IM. Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box–Behnken design. J Hazard Mater. 2008;150:174–182. doi: 10.1016/j.jhazmat.2007.09.043
  • Montgomery DC. Design and analysis of experiments. 7th ed. New York: John Wiley; 2008.
  • Jovtchev G, Gateva S, Stergios M, et al. Cytotoxic and genotoxic effects of paraquat in Hordeum vulgare and human lymphocytes in vitro. Environ Toxicol. 2010;25:294–303. doi: 10.1002/tox.20503
  • Nie Y, Hu C, Yang L, et al. Inhibition mechanism of BrO3–formation over MnOx/Al2O3 during the catalytic ozonation of 2,4-dichlorophenoxyacetic acid in water. Sep Pur Technol. 2013;117:41–45. doi: 10.1016/j.seppur.2013.03.045
  • Medellin Castillo NA, Ocampo Pérez R, Leyva Ramos R, et al. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon). Sci Total Environ. 2013;442:26–35. doi: 10.1016/j.scitotenv.2012.10.062
  • Faria PCC, Órfão JJM, Pereira MFR. Ozonation of aniline promoted by activated carbon. Chemosphere. 2007;67:809–815. doi: 10.1016/j.chemosphere.2006.10.020
  • De Oliveira TF, Chedeville O, Cagnon B, et al. Degradation kinetics of DEP in water by ozone/activated carbon process: influence of pH. Desalination. 2011;269:271–275. doi: 10.1016/j.desal.2010.11.013
  • Behin J, Farhadian N, Ahmadi M, et al. Ozone assisted electrocoagulation in a rectangular internal-loop airlift reactor: application to decolorization of acid dye. J Water Process Eng. 2015;8:171–178. doi: 10.1016/j.jwpe.2015.10.003
  • Matheswaran M, Moon IS. Influence parameters in the ozonation of phenol wastewater treatment using bubble column reactor under continuous circulation. J Ind Eng Chem. 2009;15:287–292. doi: 10.1016/j.jiec.2008.12.008
  • Chiang PC, Ko YW, Liang CH, et al. Modelling an ozone bubble column for predicting its disinfection efficiency and control of DBP formation. Chemosphere. 1999;39:55–70. doi: 10.1016/S0045-6535(98)00588-8
  • Mohajerani M, Mehrvar M, Ein-Mozaffari F. Using an external-loop airlift sonophotoreactor to enhance the biodegradability of aqueous sulfadiazine solution. Sep Pur Technol. 2012;90:173–181. doi: 10.1016/j.seppur.2012.02.025
  • Matsumura T, Noshiroya D, Tokumura M, et al. Simplified model for the hydrodynamics and reaction kinetics in a gas-liquid-solid three-phase fluidized-bed photocatalytic reactor: degradation of o-Cresol with immobilized TiO2. Ind Eng Chem Res. 2007;46:2637–2647. doi: 10.1021/ie061509r
  • Tong SP, Shi R, Zhang H, et al. Kinetics of Fe3O4–CoO/Al2O3 catalytic ozonation of the herbicide2-(2,4-dichlorophenoxy) propionic acid. J Hazard Mater. 2011;185:162–167. doi: 10.1016/j.jhazmat.2010.09.013
  • Alfano OM, Cabrera MI, Cassano AE. Modelling of light scattering in photochemical reactors. Chem Eng Sci. 1994;49:5327–5346. doi: 10.1016/0009-2509(94)00288-6
  • Tanaka K, Abe K, Sheng CY, et al. Photocatalytic wastewater treatment combined with ozone pretreatment. Environ Sci Technol. 1992;26:2534–2536. doi: 10.1021/es00036a030
  • Shi R, Zhang H, Tong SP, et al. A study on kinetics of ozonation and catalytic ozonation of dichlorprop. Acta Sci Circum. 2009;29:1701–1706. (in Chinese).
  • Elovitz MS, von Gunten U. Hydroxyl radical/ozone ratios during ozonation processes. I. the Rct concept. Ozone Sci Eng. 1999;21:239–260. doi: 10.1080/01919519908547239
  • Tong S, Shi R, Zhang H, et al. Catalytic performance of Fe3O4-CoO/Al2O3 catalyst in ozonation of 2-(2,4-dichlorophenoxy) propionic acid, nitrobenzene and oxalic acid in water. J Environ Sci. 2010;22:1623–1628. doi: 10.1016/S1001-0742(09)60298-9
  • Kamble SP, Sawant SB, Pangarkar VG. Photocatalytic degradation of m-dinitrobenzene by illuminated TiO2 in a slurry photoreactor. J Chem Technol Biotechnol. 2006;81:365–373. doi: 10.1002/jctb.1405
  • Cassano AE, Alfano OM. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal Today. 2000;58:167–197. doi: 10.1016/S0920-5861(00)00251-0
  • Tanaka K, KSN R. Photodegradation of phenoxyacetic acid and carbamate pesticides on TiO2. Appl Catal B Environ. 2002;39:305–310. doi: 10.1016/S0926-3373(02)00151-0
  • Chaudhary AJ, Grimes SM, Mukhtar-ul-Hassan. Simultaneous recovery of copper and degradation of 2,4-dichlorophenoxyacetic acid in aqueous systems by a combination of electrolytic and photolytic processes. Chemosphere. 2001;44:1223–1230. doi: 10.1016/S0045-6535(00)00350-7
  • Giri RR, Ozaki H, Takanami R, et al. A novel use of TiO2 fiber for photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid in aqueous solution. J Environ Sci. 2008;20:1138–1145. doi: 10.1016/S1001-0742(08)62161-0
  • Giri RR, Ozaki H, Taniguchi S, et al. Photocatalytic ozonation of 2, 4-dichlorophenoxyacetic acid in water with a new TiO2 fiber. Int J Environ Sci Technol. 2008;5:17–26. doi: 10.1007/BF03325993
  • Mohammadi M, Sabbaghi S. Photo-catalytic degradation of 2,4-DCP wastewater using MWCNT/TiO2 nano-composite activated by UV and solar light. Environ Nanotechnol, Monitoring Manage. 2014;1–2:24–29. doi: 10.1016/j.enmm.2014.09.002
  • Bian X, Chen J, R J. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by novel photocatalytic material of tourmaline-coated TiO2 nanoparticles: kinetic study and model. Materials. 2013;6:1530–1542. doi: 10.3390/ma6041530
  • Lu X, Zhang Q, Yang W, et al. Catalytic ozonation of 2,4-dichlorophenoxyacetic acid over novel Fe–Ni/AC. RSC Adv. 2015;5:10537–10545. doi: 10.1039/C4RA11610K
  • Muller TS, Sun Z, Kumar G, et al. The combination of photocatalysis and ozonolysis as a new approach for cleaning 2,4-dichlorophenoxyaceticacid polluted water. Chemosphere. 1998;36:2043–2055. doi: 10.1016/S0045-6535(97)10089-3
  • Andreozzi R, Caprio V, Insola A, et al. Advanced oxidation processes (AOP) for water purification and recovery. Catal Today. 1999;53:51–59. doi: 10.1016/S0920-5861(99)00102-9
  • Esplugas S, Gimenez J, Contreras S, et al. Comparison of different advanced oxidation processes for phenol degradation. Water Res. 2002;36:1034–1042. doi: 10.1016/S0043-1354(01)00301-3
  • Bolton JR, Cater SR. Homogeneous photodegradation of pollutants in contaminated water. In: Helz GR, Zeep RG, Crosby DG, editors. An introduction, aquatic and surface photochemistry. Boca Raton (FL): Lewis; 1994. p. 467–490.
  • Bolton JR, Bircher KG, Tumas W, et al. Figures of merit for the technical development and application of advanced oxidation processes. J Adv Oxid Technol. 1996;113:1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.