402
Views
21
CrossRef citations to date
0
Altmetric
Articles

Evaluation of methanogenic microbial electrolysis cells under closed/open circuit operations

ORCID Icon, ORCID Icon, , ORCID Icon, &
Pages 739-748 | Received 16 Jun 2016, Accepted 17 Mar 2017, Published online: 11 Apr 2017

References

  • Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng. 2008;100:203–212. doi: 10.1002/bit.21875
  • Call D, Logan BE. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol. 2008;42:3401–3406. doi: 10.1021/es8001822
  • Luo L, Xu S, Selvam A, et al. Assistant role of bioelectrode on methanogenic reactor under ammonia stress. Bioresour Technol. 2016;217:72–81. doi: 10.1016/j.biortech.2016.02.092
  • Luo C, Lü F, Shao L, et al. Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res. 2015;68:710–718. doi: 10.1016/j.watres.2014.10.052
  • Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Bio. 2008;7:173–190. doi: 10.1007/s11157-008-9131-1
  • Cheng KY, Ho G, Cord-Ruwisch R. Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion. Environ Sci Technol. 2011;45:796–802. doi: 10.1021/es102482j
  • Siegert M, Yates MD, Spormann AM, et al. Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells. ACS Sustainable Chem Eng. 2015;3:1668–1676. doi: 10.1021/acssuschemeng.5b00367
  • Zhang Y, Angelidaki I. Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res. 2014;56:11–25. doi: 10.1016/j.watres.2014.02.031
  • Tartakovsky B, Mehta P, Bourque JS, et al. Electrolysis-enhanced anaerobic digestion of wastewater. Bioresour Technol. 2011;102(10):5685–5691. doi: 10.1016/j.biortech.2011.02.097
  • Cui D, Guo YQ, Lee HS, et al. Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): a design suitable for scaling-up. Bioresour Technol. 2014;163:254–261. doi: 10.1016/j.biortech.2014.03.165
  • Logan BE, Rabaey K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science. 2012;337:686–690. doi: 10.1126/science.1217412
  • Thrash JC, Coates JD. Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol. 2008;42:3921–3931. doi: 10.1021/es702668w
  • Summers ZM, Fogarty HE, Leang C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science. 2010;330:1413–1415. doi: 10.1126/science.1196526
  • Zhao Z, Zhang Y, Woodard TL, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour Technol. 2015;191:140–145. doi: 10.1016/j.biortech.2015.05.007
  • De Vrieze J, Gildemyn S, Arends JB, et al. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res. 2014;54:211–221. doi: 10.1016/j.watres.2014.01.044
  • Luo L, Xu S, Cui L. Improved performance of single-chamber microbial electrolysis cells: the role of biofilm development and buffer addition. Proceeding of the International Conference of Solid Waste (ICSW) 2015: Knowledge Transfer for Sustainable Resource Management; 2015 May 19–23; Hong Kong.
  • Montpart N, Rago L, Baeza JA, et al. Hydrogen production in single chamber microbial electrolysis cells with different complex substrates. Water Res. 2015;68:601–615. doi: 10.1016/j.watres.2014.10.026
  • Ivanov I, Ren L, Siegert M, et al. A quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment. Int J Hydrogen Energ. 2013;38(30):13135–13142. doi: 10.1016/j.ijhydene.2013.07.123
  • Elmekawy A, Hegab HM, Dominguez-Benetton X, et al. Internal resistance of microfluidic microbial fuel cell: challenges and potential opportunities. Bioresour Technol. 2013;142:672–682. doi: 10.1016/j.biortech.2013.05.061
  • Fan Y, Hu H, Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ Sci Technol. 2007;41:8154–8158. doi: 10.1021/es071739c
  • Toprak H. Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond. Water Res. 1995;29(4):1111–1119. doi: 10.1016/0043-1354(94)00251-2
  • Chae KJ, Choi MJ, Kim KY, et al. Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells. Bioresour Technol. 2010;101:5350–5357. doi: 10.1016/j.biortech.2010.02.035
  • Zhang J, Zhang Y, Quan X, et al. Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic Archaea. Bioresour Technol. 2015;179:43–49. doi: 10.1016/j.biortech.2014.11.102
  • Hori T, Haruta S, Ueno Y, et al. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol. 2006;72:1623–1630. doi: 10.1128/AEM.72.2.1623-1630.2006
  • Beckmann S, Lueders T, Kruger M, et al. Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines. Appl Environ Microbiol. 2011;77:3749–3756. doi: 10.1128/AEM.02818-10
  • Nazina TN, Grigor’yan AA, Shestakova NM, et al. Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery. Microbiology. 2007;76:287–296. doi: 10.1134/S0026261707030058
  • Rotaru AE, Shrestha PM, Liu F, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci. 2014;7:408–415. doi: 10.1039/C3EE42189A
  • Thauer RK, Kaster AK, Seedorf H, et al. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008;6:579–591. doi: 10.1038/nrmicro1931
  • Vrieze JD, Hennebel T, Boon N, et al. Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol. 2012;112:1–9. doi: 10.1016/j.biortech.2012.02.079
  • Patil SA, Hägerhäll C, Gorton L. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal Rev. 2012;4:159–192. doi: 10.1007/s12566-012-0033-x
  • Kaur A, Boghani HC, Michie I, et al. Inhibition of methane production in microbial fuel cells: operating strategies which select electrogens over methanogens. Bioresour Technol. 2014;173:75–81. doi: 10.1016/j.biortech.2014.09.091
  • Mcinerney MJ, Sieber JR, Gunsalus RP. Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol. 2009;20(6):623–632. doi: 10.1016/j.copbio.2009.10.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.