485
Views
11
CrossRef citations to date
0
Altmetric
Articles

Transition metals-incorporated zeolites as environmental catalysts for indoor air ozone decomposition

, , , &
Pages 878-886 | Received 30 May 2016, Accepted 30 Mar 2017, Published online: 18 Apr 2017

References

  • Genov K, Georgiev V, Batakliev T, et al. Ozone decomposition over silver- loaded perlite. Int J Chem Mol Nucl Mater Metall Eng. 2011;5(8):700–703.
  • Batakliev T, Georgiev V, Anachkov M, et al. Ozone decomposition. Interdiscip Toxicol. 2014;7(2):47–59.
  • Lenka S, Lenka K. Impact of tropospheric ozone on agroecosystem: an assessment. J Agric Phys. 2012;12(1):1–11.
  • Weschler C. Ozone’s impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ Health Perspect. 2006;114(4):1489–1496.
  • Lee P, Davidson J. Evaluation of activated carbon filters for removal of ozone at the PPB level. Am Ind Hyg Assoc J. 1999;60(5):589–600.
  • Valdes H, Sanchez-Polo M, Zaror C. Effect of ozonation on the activated carbon surface chemical properties and on 2-mercaptobenzothiazole adsorption. Lat Am Appl Res. 2003;33(3):0327–0793.
  • Valdes H, Sanchez-Polo M, Rivera-Utrilla J, et al. Effect of ozone treatment on surface properties of activated carbon. Langmuir. 2002;18:2111–2116.
  • Valdes H, Alejandro S, Zaror C. Natural zeolite reactivity towards ozone: the role of compensating cations. J Hazard Mater. 2012;15:227–228.
  • Kaduk J, Faber J. Crystal structure of zeolite Y as function of ion exchange. Rigaku J. 1995;12(2):14–34.
  • Weitkamp J. Zeolites and catalysis. Solid State Ionics. 2000;131:175–188.
  • Chica A. Zeolites: promised materials for the sustainable production of hydrogen. Chem Eng. 2013;2013:1–19.
  • Rusu A, Dumitriu E. Destruction of volatile organic compounds by catalytic oxidation. Environ Eng Manage J. 2003;2(4):273–302.
  • Kwong CW, Chao CYH, Hui KS, et al. Catalytic ozonation of toluene using zeolite and MCM-41 materials. Environ Sci Technol. 2008;42(22):8504–8509.
  • Lamonier J. Catalytic removal of volatile organic compounds. Catalysts. 2016;6(7):1–3.
  • Kwong CW, Chao CYH, Hui KS, et al. Removal of VOCs from indoor environment by ozonation over different porous materials. Atmos Environ. 2008;42:2300–2311.
  • Brodu N, Zaitan H, Manero M, et al. Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate. Water Sci Technol. 2012;66(9):2020–2026.
  • Brodu N, Manero M, Andriantsiferana C, et al. Role of Lewis acid sites of ZSM-5 zeolite on gaseous ozone abatement. Chem Eng J. 2013;231:281–286.
  • Hartmann M, Kevan L. Transition-Metal ions in aluminophosphate and silicoaluminophosphate molecular sieves: location, interaction with adsorbates and catalytic properties. Chem Rev. 1999;99:635–664.
  • Frising T, Leflaive P. Extraframework cation distributions in X and Y faujasite zeolites: A review. Microporous Mesoporous Mater. 2008;114:27–63.
  • Ratnasamy P, Srinivas D. Selective oxidations over zeolite- and mesoporous silica-based catalysts: selected examples. Catal Today. 2009;141:3–11.
  • Viswanathan B, Jacob B. Alkylation, hydrogenation and oxidation catalyzed by mesoporous materials. Catal Rev. 2005;47:1–82.
  • Punniyamurthy T, Velusamy S, Iqbal J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev. 2005;105:2329–2364.
  • Sedlmair C, Gil B, Seshan K, et al. An in situ IR study of the NOx adsorption/reduction mechanism on modified Y zeolites. Phys Chem. 2003;5:1897–1905.
  • Jing Z. Preparation and magnetic properties of fibrous gamma iron oxide nanoparticles via a nonaqueous medium. Mater Lett. 2006;60:2217–2221.
  • Hassan H, Hameed B. Oxidative decolorization of acid Red 1 solutions by Fe–zeolite Y type catalyst. Desalination. 2011;276(1–3):45–52.
  • Yao G, Wang F, Wang X, et al. Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed. Energy. 2010;35:2295–2300.
  • Madejova J, Arvaiova B, Komade P. FT-IR spectroscopic characterization of thermally treated Cu2+, Cd2+ and Li+ montmorillonites. Spectrochim Acta Part A. 1999;55:2467–2476.
  • Izumi J, Yasutake A, Tomonaga N, et al. Development on high performance Gas separation process using Gas adsorption. Mitsubishi Heavy Ind, Ltd Tech Rev. 2002;39:6–10.
  • Malherbe R, Wendelbo R. Study of Fourier transform infrared-temperature programmed desorption of benzene, toluene and ethylbenzene from H-ZSM-5 and H-Beta zeolites. Thermochim Acta. 2003;400:165–173.
  • Mortier J. Compilation of extra framework sites in zeolites. Guildford: Butterworth Sci. Ltd.; 1982. p. 67.
  • Spasova I, Nikolov P, Mehandjiev D. Ozone decomposition over alumina-supported copper, manganese and copper-manganese catalysts. Ozone Sci Eng. 2007;29:41–45.
  • Mehandjiev D, Naydenov A, Ivanov G. Ozone decomposition, benzene and CO oxidation over NiMnO3-ilmenite and NiMn2O4-spinel catalysts. Appl Catal A Gen. 2001;206:13–18.
  • Parmon N, Panov I, Uriarte A, et al. Nitrous oxide in oxidation chemistry and catalysis: application and production. Catal Today. 2005;100(1–2):115–131.
  • Yumura T, Takeuchi M, Kobayashi H, et al. Effects of ZSM-5 zeolite confinement on reaction intermediates during dioxygen activation by enclosed dicopper cations. Inorg Chem. 2009;48:508–517.
  • Woertink S, Smeets J, Groothaert H, et al. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc Natl Acad Sci. 2009;106(45):18908–18913.
  • Goodman R, Schneider F, Hass C, et al. Theoretical analysis of oxygen bridged Cu pairs in Cu-exchanged zeolites. Catal Lett. 1998;56:183–188.
  • Goodman B, Hass K, Schneider W, et al. Cluster model studies of oxygen-bridged Cu pairs in Cu-ZSM-5 catalysts. J Phys Chem B. 1999;103:10452–10460.
  • Da Costa P, Moden B, Meitzner GD, et al. Spectroscopic and chemical characterization of active and inactive Cu species in NO decomposition catalysts based on Cu–ZSM–5. Phys Chem. 2002;4:4590–4601.
  • Palomino GT, Fisicaro P, Bordiga S, et al. Oxidation states of copper ions in ZSM-5 zeolites. A multitechnique investigation. J Phys Chem B. 2000;104:4064–4073.
  • Xamena F, Fisicaro P, Berlier G, et al. Thermal reduction of Cu2+-mordenite and reoxidation upon interaction with H2O, O2, and NO. J Phys Chem B. 2003;107:7036–7044.
  • Sugasawa M, Ogata A. Effect of different combinations of metal and zeolite on ozone-assisted catalysis for toluene removal. Ozone: Sci Eng. 2011;33:158–163.
  • Ribera A, Arends IWCE, de Vries S, et al. Preparation, characterization, and performance of FeZSM-5 for the selective oxidation of benzene to phenol with N2O. J Catal. 2000;195:287–297.
  • Pidko A, van Santen A, Hensen M. Multinuclear gallium-oxide cations in high-silica zeolites. Phys Chem. 2009;11:2893–2902.
  • Pidko A, Hensen M, van Santen A. Self-organization of extra framework cations in zeolites. Proc R Soc A. 2012;468:2070–2086.
  • Huang H, Xinguo Y, Wenjun H, et al. Catalytic ozonation of gaseous benzene over MnOx/ZSM-5 at ambient temperature: prevention of catalyst deactivation and byproducts emission. 8th international conference of environmental catalysis 2014, 24–27 August 8th ICEC in asheville, NC, USA.
  • Kumar N, Konova P, Naydenov A, et al. Ag-modified H-beta, H-MCM-41 and SiO2: influence of support, acidity and Ag content in ozone decomposition at ambient temperature. Catal Today. 2007;119(1–4):342–346.
  • Imamura S, Ikebata M, Ito T et al. Decomposition of ozone on a silver catalyst. Ind Eng Chem Res. 1991;30(1):217–221.
  • Monneyron P, Mathe S, Manero MH, et al. Regeneration of high silica zeolites via advanced oxidation processes-apreliminary study about adsorption reactivity towards ozone. Chem Eng Res Des. 2003;81(9):1193–1198.
  • Dhandapani B, Oyama ST. Gas phase ozone decomposition catalysts. Appl Catal B Environ. 1997;11:129–166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.