375
Views
10
CrossRef citations to date
0
Altmetric
Articles

Comparison of adsorption equilibrium models and error functions for the study of sulfate removal by calcium hydroxyapatite microfibrillated cellulose composite

, ORCID Icon, , , & ORCID Icon
Pages 952-966 | Received 29 Sep 2016, Accepted 05 Apr 2017, Published online: 04 May 2017

References

  • Zheng Y, Yong X, Yang Z-H, et al. The bacterial communities of bioelectrochemical systems associated with the sulfate removal under different pHs. Process Biochem. 2014;49:1345–1351. doi: 10.1016/j.procbio.2014.04.019
  • Guimarães D, Leão VA. Batch and fixed-bed assessment of sulphate removal by the weak base ion exchange resin Amberlyst A21. J Hazard Mater. 2014;280:209–215. doi: 10.1016/j.jhazmat.2014.07.071
  • Nadagouda MN, Pressman J, White C, et al. Novel thermally stable poly(vinyl chloride) composites for sulfate removal. J Hazard Mater. 2011;188:19–25. doi: 10.1016/j.jhazmat.2011.01.005
  • WHO. Guidelines for drinking–water quality. 3rd ed. Gineva: World Health Organization; 2008, 668 pp.
  • USEPA. Sulfate in drinking water. Washington (DC): U.S. Environmental Protection Agency; 1999.
  • Sepehr N, Yetilmezsoy K, Marofi S, et al. Synthesis of nanosheet layered double hydroxides at lower pH: optimization of hardness and sulfate removal from drinking water samples. J Taiwan Inst Chem Eng. 2014;45:2786–2800. doi: 10.1016/j.jtice.2014.07.013
  • Taffarel SR, Rubio J. Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Miner Eng. 2010;23:771–779. doi: 10.1016/j.mineng.2010.05.018
  • Bondi CAM, Marks JL, Wroblewski LB, et al. Human and environmental toxicity of sodium lauryl sulfate (SLS): evidence for safe use in household cleaning products. Environ Health Insights. 2015;9:27–32.
  • Van der Bruggen B, Vandecasteele C. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environ Pollut. 2003;122:435–445. doi: 10.1016/S0269-7491(02)00308-1
  • Fu L, Wang J, Su Y. Removal of low concentrations of hardness ions from aqueous solutions using electrodeionization process. Sep Purif Technol. 2009;68:390–396. doi: 10.1016/j.seppur.2009.06.010
  • Seo S-J, Jeon H, Lee J, et al. Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 2010;44:2267–2275. doi: 10.1016/j.watres.2009.10.020
  • Hasson D, Sidorenko G, Semiat R. Calcium carbonate hardness removal by a novel electrochemical seeds system. Desalination. 2010;263:285–289. doi: 10.1016/j.desal.2010.06.036
  • Apell JN, Boyer TH. Combined ion exchange treatment for removal of dissolved organic matter and hardness. Water Res. 2010;44:2419–2430. doi: 10.1016/j.watres.2010.01.004
  • Moret A, Rubio J. Sulphate and molybdate ions uptake by chitin-based shrimp shells. Miner Eng. 2003;16:715–722. doi: 10.1016/S0892-6875(03)00169-9
  • Mulinari DR, da Silva MLCP. Adsorption of sulphate ions by modification of sugarcane bagasse cellulose. Carbohydr Polym. 2008;74:617–620. doi: 10.1016/j.carbpol.2008.04.014
  • Cao W, Dang Z, Zhou X-Q, et al. Removal of sulphate from aqueous solution using modified rice straw: preparation, characterization and adsorption performance. Carbohydr Polym. 2011;85:571–577. doi: 10.1016/j.carbpol.2011.03.016
  • Namasivayam C, Sangeetha D. Application of coconut coir pith for the removal of sulfate and other anions from water. Desalination. 2008;219:1–13. doi: 10.1016/j.desal.2007.03.008
  • Silva AM, Lima RMF, Leão VA. Mine water treatment with limestone for sulfate removal. J Hazard Mater. 2012;221–222:45–55. doi: 10.1016/j.jhazmat.2012.03.066
  • Hokkanen S, Repo E, Johansson Westholm L, et al. Adsorption of Ni2+ Cd2+ PO43− and NO3− from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite. Chem Eng J. 2014;252:64–74. doi: 10.1016/j.cej.2014.04.101
  • Hokkanena S, Bhatnagar A, Repoa E, et al. 2016, calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution. Chem Eng J. 2016;283:445–452. doi: 10.1016/j.cej.2015.07.035
  • Hokkanen S. Modified nano- and microcellulose based adsorption materials in water treatment. Acta Universitatis, Lappeenrantaensis; 2014. p. 588.
  • He M, Chang C, Peng N, et al. Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydr Polym. 2012;87:2512–2518. doi: 10.1016/j.carbpol.2011.11.029
  • Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Rev Chem Eng J. 2010;156:2–10. doi: 10.1016/j.cej.2009.09.013
  • Tien C, Ramarao BV. Further examination of the relationship between the Langmuir kinetics and the Lagergren and the second-order rate models of batch adsorption. Sep Purif Technol. 2014;136:303–308. doi: 10.1016/j.seppur.2014.08.013
  • Azizian S, Bashiri H. Adsorption kinetics at the solid/solution interface: statistical rate theory at initial times of adsorption and close to equilibrium. Langmuir. 2008;24:11669–11676. doi: 10.1021/la802288p
  • Tseng R-L, Wu P-H, Wu F-C, et al. A convenient method to determine kinetic parameters of adsorption processes by nonlinear regression of pseudo-nth-order equation. Chem Eng J. 2014;237:153–161. doi: 10.1016/j.cej.2013.10.013
  • Freitas OMM, Martins RJE, Delerue-Matos CM, et al. Removal of Cd(II) Zn(II) and Pb(II) from aqueous solutions by brown marine macro algae: kinetic modeling. J Hazard Mater. 2008;153:493–501. doi: 10.1016/j.jhazmat.2007.08.081
  • Ho YS, Ng JCY, McKay G. Kinetics of pollutant sorption by biosorbents: review. Sep Purif Methods. 2000;29:189–232. doi: 10.1081/SPM-100100009
  • Hokkanen S, Repo E, Lou S, et al. Removal of arsenic(V) by magnetic nanoparticle activated microfibrillated cellulose. Chem Eng J. 2015;260:886–894. doi: 10.1016/j.cej.2014.08.093
  • Freundlich HMF. About the adsorption in solutions. J Phys Chem. 1906;57:385–471.
  • Chatterjee S, Chatterjee T, Lim S-R, et al. Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environ Technol. 2011;32(13):1503–1514. doi: 10.1080/09593330.2010.543157
  • Hokkanen S, Repo E, Bhatnagar A, et al. Adsorption of hydrogen sulphide from aqueous solutions using modified nano/micro fibrillated cellulose. Environ Technol. 2014;35:2334–2346. doi: 10.1080/09593330.2014.903300
  • Redlich O, Peterson DL. A useful adsorption isotherm. J Physic Chem. 1959;63:1024. doi: 10.1021/j150576a611
  • Allen SJ, Gan Q, Matthews R, et al. Comparison of optimised isotherm models for basic dye adsorption by kudzu. Biores Technol. 2003;88:143–152. doi: 10.1016/S0960-8524(02)00281-X
  • Chan LS, Cheung WH, Allen SJ, et al. Error analysis of adsorption isotherm models for acid dyes onto bamboo derived activated carbon. Chin J Chem Eng. 2012;20:535–542. doi: 10.1016/S1004-9541(11)60216-4
  • Gimbert F, Morin-Crini N, Renault F, et al. Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater. 2008;157:34–46. doi: 10.1016/j.jhazmat.2007.12.072
  • Andrae R, Schulze-Hartung T, Melchiorar P. Dos and don’ts of reduced chi-squared. arXiv:1012.3754 [astro-ph.IM]; 2010.
  • Smiciklas I, Dimovic S, Plecas I, et al. Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res. 2006;40:2267–2274. doi: 10.1016/j.watres.2006.04.031
  • Ghaneian MT, Ghanizadeh G, Alizadeh MTH, et al. Equilibrium and kinetics of phosphorous adsorption onto bone charcoal from aqueous solution. Environ Technol. 2014;35:882–890. doi: 10.1080/09593330.2013.854838
  • Zheng W, Li X, Yang Q, et al. Adsorption of Cd(II) and Cu(II) from aqueous solution by carbonate hydroxylapatite derived from eggshell waste. J Hazard Mater. 2007;147:534–539. doi: 10.1016/j.jhazmat.2007.01.048
  • Bera A, Kumar T, Ojha K, et al. Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms kinetics and thermodynamic studies. Appl Surf Sci. 2013;284:87–99. doi: 10.1016/j.apsusc.2013.07.029
  • Sehaqui H, Mautner A, Perez de Larraya U, et al. Cationic cellulose nanofibers from waste pulp residues and their nitrate fluoride sulphate and phosphate adsorption properties. Carbohydrat Polym. 2016;135:334–340. doi: 10.1016/j.carbpol.2015.08.091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.