365
Views
10
CrossRef citations to date
0
Altmetric
Articles

Phosphate adsorption from aqueous solution by lanthanum–iron hydroxide loaded with expanded graphite

, , &
Pages 997-1006 | Received 21 Dec 2016, Accepted 04 Apr 2017, Published online: 27 Apr 2017

References

  • Zhu Z, Zeng H, Zhu Y, et al. Kinetics and thermodynamic study of phosphate adsorption on the porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C with eucalyptus wood microstructure. Sep Purif Technol. 2013;117:124–130. doi: 10.1016/j.seppur.2013.05.048
  • Yan LG, Xu YY, Yu HQ, et al. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. J Hazard Mater. 2010;179(179):244–250. doi: 10.1016/j.jhazmat.2010.02.086
  • Gilbert N. Environment: the disappearing nutrient. Nature. 2009;461(7265):716–718. doi: 10.1038/461716a
  • Kratz S, Schick J, Schnug E. Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Sci Total Environ. 2015;542(Pt B):1013–1019.
  • Shyla B, Mahadevaiah, Nagendrappa G. A simple spectrophotometric method for the determination of phosphate in soil, detergents, water, bone and food samples through the formation of phosphomolybdate complex followed by its reduction with thiourea. Spectrochim Acta A. 2011;78(1):497–502. doi: 10.1016/j.saa.2010.11.017
  • Savica V, Maiolino G, Calò LA. To reconsider (limit) the use of phosphate based food and beverages additives. A real need for health preservation. Clin Nutr. 2016;35(1):240–240. doi: 10.1016/j.clnu.2015.10.004
  • Mandel K, Drenkovatuhtan A, Hutter F, et al. Layered double hydroxide ion exchangers on superparamagnetic microparticles for recovery of phosphate from waste water. J Mater Chem A. 2013;1(5):1840–1848. doi: 10.1039/C2TA00571A
  • Yan H, Huang Y, Wang G, et al. Water eutrophication evaluation based on rough set and petri nets: a case study in Xiangxi-River, three Gorges Reservoir. Ecol Indic. 2016;69:463–472. doi: 10.1016/j.ecolind.2016.05.010
  • García-Nieto PJ, García-Gonzalo E, Fernández JRA, et al. Using evolutionary multivariate adaptive regression splines approach to evaluate the eutrophication in the Pozón de la Dolores lake (Northern Spain). Ecol Eng. 2016;94:136–151. doi: 10.1016/j.ecoleng.2016.05.047
  • Zhao Z, Song X, Wei W, et al. Influences of iron and calcium carbonate on wastewater treatment performances of algae based reactors. Bioresour Technol. 2016;216:1–11. doi: 10.1016/j.biortech.2016.05.043
  • De Lange WJ, Botha AM, Oberholster PJ. Towards tradable permits for filamentous green algae pollution. J Environ Manage. 2016;179:21–30. doi: 10.1016/j.jenvman.2016.04.052
  • Olyaie E, Abyaneh HZ, Mehr AD. A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. Geosci Front. 2016. doi: 10.1016/j.gsf.2016.04.007
  • Dong L, Lv Y, Zeng H, et al. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules. Bioresour Technol. 2016;212:92–99. doi: 10.1016/j.biortech.2016.04.008
  • Huang H, Liu J, Ding L. Recovery of phosphate and ammonia nitrogen from the anaerobic digestion supernatant of activated sludge by chemical precipitation. J Clean Prod. 2015;102:437–446. doi: 10.1016/j.jclepro.2015.04.117
  • Mor S, Chhoden K, Ravindra K. Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. J Clean Prod. 2016;129:673–680. doi: 10.1016/j.jclepro.2016.03.088
  • Li F, Wu W, Li R, et al. Adsorption of phosphate by acid-modified fly ash and palygorskite in aqueous solution: experimental and modeling. Appl Clay Sci. 2016;132–133:343–352. doi: 10.1016/j.clay.2016.06.028
  • Ye J, Cong X, Zhang P, et al. Operational parameter impact and back propagation artificial neural network modeling for phosphate adsorption onto acid-activated neutralized red mud. J Mol Liq. 2016;216:35–41. doi: 10.1016/j.molliq.2016.01.020
  • Uzunova EL, Mikosch H. Adsorption of phosphates and phosphoric acid in zeolite clinoptilolite: electronic structure study. Micropor Mesopor Mater. 2016;232:119–125. doi: 10.1016/j.micromeso.2016.06.019
  • Dan C, Jin X, Li G, et al. Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Chemosphere. 2016;159:23–31. doi: 10.1016/j.chemosphere.2016.05.080
  • Wang YY, Lu H, Liu Y, et al. Removal of phosphate from aqueous solution by SiO2-biochar nanocomposites prepared by pyrolysis of vermiculite treated algal biomass. RSC Adv. 2016;6(87):83534–83546. doi: 10.1039/C6RA15532D
  • Ge X, Song X, Ma Y, et al. Fabrication of hierarchical iron-containing MnO2 hollow microspheres assembled by thickness-tunable nanosheets for efficient phosphate removal. J Mater Chem A. 2016;4(38):14814–14826. doi: 10.1039/C6TA05386F
  • Merschel G, Bau M. Rare earth elements in the aragonitic shell of freshwater mussel corbicula fluminea, and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Sci Total Environ. 2015;533:91–101. doi: 10.1016/j.scitotenv.2015.06.042
  • Wang Z, Shen D, Fei S, et al. Phosphate adsorption on lanthanum loaded biochar. Chemosphere. 2016;150:1–7. doi: 10.1016/j.chemosphere.2016.02.004
  • Huang W, Zhu Y, Tang J, et al. Lanthanum-doped ordered mesoporous hollow silica spheres as novel adsorbents for efficient phosphate removal. J Mater Chem A. 2014;2(2):8839–8848. doi: 10.1039/c4ta00326h
  • Xie J, Lin Y, Li C, et al. Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. Powder Technol. 2015;269(4):351–357. doi: 10.1016/j.powtec.2014.09.024
  • Halajnia A, Oustan S, Najafi N, et al. Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Appl Clay Sci. 2013;80–81(4):305–312. doi: 10.1016/j.clay.2013.05.002
  • Li G, Gao S, Zhang G, et al. Enhanced adsorption of phosphate from aqueous solution by nanostructured iron(III)–copper(II) binary oxides. Chem Eng J. 2014;235(1):124–131. doi: 10.1016/j.cej.2013.09.021
  • Su Y, Yang W, Sun W, et al. Synthesis of mesoporous cerium–zirconium binary oxide nanoadsorbents by a solvothermal process and their effective adsorption of phosphate from water. Chem Eng J. 2015;268:270–279. doi: 10.1016/j.cej.2015.01.070
  • Lǚ J, Liu H, Liu R, et al. Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technol. 2013;233(1):146–154. doi: 10.1016/j.powtec.2012.08.024
  • Yang Y, Chen JP. Key factors for optimum performance in phosphate removal from contaminated water by a Fe–Mg–La tri-metal composite sorbent. J Colloid Interface Sci. 2015;445:303–311. doi: 10.1016/j.jcis.2014.12.056
  • Ismail R, Ciobanu CL, Cook NJ, et al. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos. 2014;184–187(1):456–477. doi: 10.1016/j.lithos.2013.07.023
  • Fang L, Huang L, Holm PE, et al. Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal. J Mater Chem A. 2015;3(14):7505–7512. doi: 10.1039/C4TA07083F
  • Yoon SY, Lee CG, Park JA, et al. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem Eng J. 2014;236(2):341–347. doi: 10.1016/j.cej.2013.09.053
  • Liu J, Qi Z, Chen J, et al. Phosphate adsorption on hydroxyl–iron–lanthanum doped activated carbon fiber. Chem Eng J. 2013;215–216(2):859–867. doi: 10.1016/j.cej.2012.11.067
  • Jin H, Ji Z, Yuan J, et al. Research on removal of fluoride in aqueous solution by alumina-modified expanded graphite composite. J Alloys Compd. 2015;620:361–367. doi: 10.1016/j.jallcom.2014.09.143
  • Xu C, Li J, He F, et al. Al2O3–Fe3O4-expanded graphite nano-sandwich structure for fluoride removal from aqueous solution. RSC Adv. 2016;6(99):97376–97384. doi: 10.1039/C6RA19390K
  • Zhang F, Zhao Q, Yan X, et al. Rapid preparation of expanded graphite by microwave irradiation for the extraction of triazine herbicides in milk samples. Food Chem. 2016;197(Pt A):943–949. doi: 10.1016/j.foodchem.2015.11.056
  • Pang X, Yang C, Ren S. Adsorption capacity of expansion graphite for xylenol Orange. J Mater Sci Chem Eng. 2013;1(1):1–5.
  • Yao T, Zhang Y, Xiao Y, et al. The effect of environmental factors on the adsorption of lubricating oil onto expanded graphite. J Mol Liq. 2016;218:611–614. doi: 10.1016/j.molliq.2016.02.050
  • Pang XY, Lv P, Feng YQ, et al. Study on the adsorbing characteristics of expanded graphite for organic dyes. Environ Sci Indian J. 2008;3(2):150–157.
  • Li SD, Tian SH, Du CM, et al. Vaseline-loaded expanded graphite as a new adsorbent for toluene. Chem Eng J. 2010;162(2):546–551. doi: 10.1016/j.cej.2010.05.059
  • Zhang L, Wang Y, Jin SW, et al. Adsorption isotherm, kinetic and mechanism of expanded graphite for sulfadiazine antibiotics removal from aqueous solutions. Environ Technol. 2017. doi: 10.1080/09593330.2016.1272637
  • Bermejo-Barrera P, Moreda-Piñeiro A, Bermejo-Barrera A. Study of ammonium molybdate to minimize the phosphate interference in the selenium determination by electrothermal atomic absorption spectrometry with deuterium background correction. Spectrochim Acta B. 2002;57(2):327–337. doi: 10.1016/S0584-8547(01)00397-4
  • Hughes AE. Crystal defects. Nature. 1973;244(244):470–470. doi: 10.1038/244470b0
  • Simonin JP. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem Eng J. 2016;300:254–263. doi: 10.1016/j.cej.2016.04.079
  • Inyang HI, Onwawoma A, Bae S. The Elovich equation as a predictor of lead and cadmium sorption rates on contaminant barrier minerals. Soil Tillage Res. 2016;155:124–132. doi: 10.1016/j.still.2015.07.013
  • Morris JC, Weber WJ Jr. Removal of biologically-resistant pollutants from waste waters by adsorption. Adv Water Pollut Res. 1964;269(22):231–266. doi: 10.1016/B978-1-4832-8391-3.50032-4
  • Jia Y, Wang H, Zhao X, et al. Kinetics, isotherms and multiple mechanisms of the removal for phosphate by Cl-hydrocalumite. Appl Clay Sci. 2016;129:116–121. doi: 10.1016/j.clay.2016.05.018
  • Ye Z, Chen D, Pan Z, et al. An improved Langmuir model for evaluating methane adsorption capacity in shale under various pressures and temperatures. J Nat Gas Sci Eng. 2016;31:658–680. doi: 10.1016/j.jngse.2016.03.070
  • Lalley J, Han C, Li X, et al. Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests. Chem Eng J. 2016;284:1386–1396. doi: 10.1016/j.cej.2015.08.114
  • Xu K, Deng T, Li C, et al. Study on phosphate removal from aqueous solution using Fe–Mn–Zn trimetal oxide modified fly ash. Nat Environ Pollut Technol. 2013;12(4):651–655.
  • Tian S, Jiang P, Ning P, et al. Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite. Chem Eng J. 2009;151(1–3):141–148. doi: 10.1016/j.cej.2009.02.006
  • Shanableh A, Enshasi G, Elsergany M. Phosphorous adsorption using Al/Fe-modified bentonite adsorbents – effect of Al and Fe combinations. Desalin Water Treat. 2015;57(33):1–7.
  • Huang W, Chen J, He F, et al. Effective phosphate adsorption by Zr/Al-pillared montmorillonite: insight into equilibrium, kinetics and thermodynamics. Appl Clay Sci. 2015;104:252–260. doi: 10.1016/j.clay.2014.12.002
  • Meng S, Li Y, Zhang T, et al. Influences of environmental factors on lanthanum/aluminum-modified zeolite adsorbent (La/Al-ZA) for phosphorus adsorption from wastewater. Water Air Soil Pollut. 2013;224(6):1–8. doi: 10.1007/s11270-013-1556-7
  • Deng L, Shi Z. Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution. J Alloys Compd. 2015;637:188–196. doi: 10.1016/j.jallcom.2015.03.022
  • Jing T, Yang Z, Zeng G, et al. Preparation of hydroxyl-iron-zirconium modified activated carbon fiber and its phosphate removal performance. Chin J Environ Eng. 2016;10(6):2881–2888.
  • Johir MAH, Pradhan M, Loganathan P, et al. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: kinetics, thermodynamics and membrane filtration adsorption hybrid system studies. J Environ Manage. 2015;167(2):167–174.
  • Jiao Y, Zeng Q, Liang P, et al. La-EDTA coated Fe3O4 nanomaterial: preparation and application in removal of phosphate from water. J Environ Sci. 2013;25(2):413–418. doi: 10.1016/S1001-0742(12)60014-X
  • Aghazadeh M, Golikand AN, Ghaemi M, et al. A novel lanthanum hydroxide nanostructure prepared by cathodic electrodeposition. Mater Lett. 2011;65(10):1466–1468. doi: 10.1016/j.matlet.2011.02.039
  • Zhang L, Zhou Q, Liu J, et al. Phosphate adsorption on lanthanum hydroxide-doped activated carbon fiber. Chem Eng J. 2012;185–186(6):160–167. doi: 10.1016/j.cej.2012.01.066
  • Zhang L, Wan L, Ning C, et al. Removal of phosphate from water by activated carbon fiber loaded with lanthanum oxide. J Hazard Mater. 2011;190(1–3):848–855. doi: 10.1016/j.jhazmat.2011.04.021
  • Zhang L, Gao Y, Zhou Q, et al. High-performance removal of phosphate from water by graphene nanosheets supported lanthanum hydroxide nanoparticles. Water Air Soil Pollut. 2014;225(6):1–11. doi: 10.1007/s11270-014-1967-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.