215
Views
9
CrossRef citations to date
0
Altmetric
Articles

Horizontally rotating disc recirculated photoreactor with TiO2-P25 nanoparticles immobilized onto a HDPE plate for photocatalytic removal of p-nitrophenol

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1061-1070 | Received 25 Mar 2016, Accepted 02 Apr 2017, Published online: 05 May 2017

References

  • Saleh TA, Gupta VK. Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ Sci Pollut Res. 2012;19:1224–1228. doi: 10.1007/s11356-011-0670-6
  • Mittal A, Gupta VK, Malviya A, et al. Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (metanil yellow) by adsorption over waste materials (bottom ash and de-oiled soya). J Hazard Mater. 2008;151:821–832. doi: 10.1016/j.jhazmat.2007.06.059
  • Gupta VK, Agarwal S, Saleh TA. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater. 2011;185:17–23. doi: 10.1016/j.jhazmat.2010.08.053
  • Gupta VK, Gupta B, Rastogi A, et al. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye – Acid Blue 113. J Hazard Mater. 2011;186:891–901. doi: 10.1016/j.jhazmat.2010.11.091
  • Mittal A, Mittal J, Malviya A, et al. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci. 2010;343:463–473. doi: 10.1016/j.jcis.2009.11.060
  • Gupta VK, Jain R, Varshney S. Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Colloid Interface Sci. 2007;312:292–296. doi: 10.1016/j.jcis.2007.03.054
  • Gupta VK, Mittal A, Krishnan L, et al. Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J Colloid Interface Sci. 2006;293:16–26. doi: 10.1016/j.jcis.2005.06.021
  • Mittal A, Mittal J, Malviya A, et al. Decoloration treatment of a hazardous triarylmethane dye, light Green SF (yellowish) by waste material adsorbents. J Colloid Interface Sci. 2010;342:518–527. doi: 10.1016/j.jcis.2009.10.046
  • Daneshvar N, Behnajady MA, Asghar YZ. Photooxidative degradation of 4-nitrophenol (4–NP) in UV/H2O2 process: influence of operational parameters and reaction mechanism. J Hazard Mater. 2007;139:275–279. doi: 10.1016/j.jhazmat.2006.06.045
  • Patel SKS, Choi S-H, Kang Y-C, et al. Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale. 2016;8:6728–6738. doi: 10.1039/C6NR00346J
  • Otari SV, Patel SKS, Jeong J-H, et al. A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. RSC Adv. 2016;6:86808–86816. doi: 10.1039/C6RA14688K
  • Khalil LB, Mourad WE, Rophael MW. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl Catal B. 1998;17:267–273. doi: 10.1016/S0926-3373(98)00020-4
  • Karthikeyan S, Gupta VK, Boopathy R, et al. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J Mol Liq. 2012;173:153–163. doi: 10.1016/j.molliq.2012.06.022
  • Eskandarloo H, Hashempour M, Vicenzo A, et al. High-temperature stable anatase-type TiO2 nanotube arrays: a study of the structure–activity relationship. Appl Catal B. 2016;185:119–132. doi: 10.1016/j.apcatb.2015.11.048
  • Behnajady MA, Eskandarloo H, Eskandarloo F. Artificial neural network modeling of the influence of sol–gel synthesis variables on the photocatalytic activity of TiO2 nanoparticles in the removal of Acid Red 27. Res Chem Intermed. 2015;41:6463–6476. doi: 10.1007/s11164-014-1753-z
  • Fujishima A. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37–38. doi: 10.1038/238037a0
  • Xiong S, George S, Ji Z, et al. Size of TiO2 nanoparticles influences their phototoxicity: an in vitro investigation. Arch Toxicol. 2013;87:99–109. doi: 10.1007/s00204-012-0912-5
  • Vescovi T, Coleman HM, Amal R. The effect of pH on UV-based advanced oxidation technologies – 1, 4-dioxane degradation. J Hazard Mater. 2010;182:75–79. doi: 10.1016/j.jhazmat.2010.06.001
  • Matsushita Y, Ichimura T, Ohba N, et al. Recent progress on photoreactions in microreactors. Pure Appl Chem. 2007;79:1959–1968. doi: 10.1351/pac200779111959
  • Matsushita Y, Ohba N, Kumada S, et al. Photocatalytic reactions in microreactors. Chem Eng J. 2008;135:S303–S308. doi: 10.1016/j.cej.2007.07.045
  • Van Gerven T, Mul G, Moulijn J, et al. A review of intensification of photocatalytic processes. Chem Eng Process Process Intensif. 2007;46:781–789. doi: 10.1016/j.cep.2007.05.012
  • Chang CY, Wu NL. Process analysis on photocatalyzed dye decomposition for water treatment with TiO2-coated rotating disk reactor. Ind Eng Chem Res. 2010;49:12173–12179. doi: 10.1021/ie101330n
  • Boiarkina I, Pedron S, Patterson DA. An experimental and modelling investigation of the effect of the flow regime on the photocatalytic degradation of methylene blue on a thin film coated ultraviolet irradiated spinning disc reactor. Appl Catal B. 2011;110:14–24. doi: 10.1016/j.apcatb.2011.08.008
  • Yatmaz HC, Wallis C, Howarth CR. The spinning disc reactor – studies on a novel TiO2 photocatalytic reactor. Chemosphere. 2001;42:397–403. doi: 10.1016/S0045-6535(00)00088-6
  • Dionysiou DD, Khodadoust AP, Kern AM, et al. Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor. Appl Catal B. 2000;24:139–155. doi: 10.1016/S0926-3373(99)00103-4
  • Hamill NA, Weatherley LR, Hardacre C. Use of a batch rotating photocatalytic contactor for the degradation of organic pollutants in wastewater. Appl Catal B. 2001;30:49–60. doi: 10.1016/S0926-3373(00)00219-8
  • Boiarkina I, Norris S, Patterson DA. The case for the photocatalytic spinning disc reactor as a process intensification technology: comparison to an annular reactor for the degradation of methylene blue. Chem Eng J. 2013;225:752–765. doi: 10.1016/j.cej.2013.03.125
  • Mohammadi S, Boodhoo KV. Online conductivity measurement of residence time distribution of thin film flow in the spinning disc reactor. Chem Eng J. 2012;207-208:885–894. doi: 10.1016/j.cej.2012.07.120
  • Behnajady MA, Amirmohammadi-Sorkhabi S, Modirshahla N, et al. Investigation of the efficiency of a tubular continuous-flow photoreactor with supported titanium dioxide nanoparticles in the removal of 4-nitrophenol: operational parameters, kinetics analysis and mineralization studies. Water Sci Technol. 2011;64:56–62. doi: 10.2166/wst.2011.666
  • Behnajady MA, Siliani-Behrouz E, Modirshahla N. Combination of design equation and kinetic modeling for a batch-recirculated photoreactor at photooxidative removal of C.I. Acid Red 17. Int J Chem Reactor Eng. 2012;10. doi: 10.1515/1542-6580.2945
  • Eskandarloo H, Badiei A, Behnajady MA, et al. UV–LEDs assisted preparation of silver deposited TiO2 catalyst bed inside microchannels as a high efficiency microphotoreactor for cleaning polluted water. Chem Eng J. 2015;270:158–167. doi: 10.1016/j.cej.2015.01.117
  • Sheidaei B, Behnajady MA. Determination of optimum conditions for removal of acid Orange 7 in batch-recirculated photoreactor with immobilized TiO2-P25 nanoparticles by Taguchi method. Desalin Water Treat. 2015;56:2417–2424. doi: 10.1080/19443994.2014.961175
  • Behnajady MA, Eskandarloo H, Modirshahla NA, et al. Influence of the chemical structure of organic pollutants on photocatalytic activity of TiO2 nanoparticles: kinetic analysis and evaluation of electrical energy per order (EEO). Dig J Nanomater Bios. 2011;6:1887–1895.
  • Sahu JN, Acharya J, Meikap BC. Response surface modeling and optimization of chromium (VI) removal from aqueous solution using tamarind wood activated carbon in batch process. J Hazard Mater. 2009;172:818–825. doi: 10.1016/j.jhazmat.2009.07.075
  • Tennakone K, Tilakaratne CT, Kottegoda IR. Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films. J Photochem Photobiol A. 1995;87:177–179. doi: 10.1016/1010-6030(94)03980-9
  • Hasan SH, Srivastava P. Biosorptive abatement of Cd2+ by water using immobilized biomass of arthrobacter sp.: response surface methodological approach. Ind Eng Chem Res Industrial. 2011;50:247–258. doi: 10.1021/ie101739q
  • Francis F, Sabu A, Nampoothiri KM, et al. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. BioChem Eng J. 2003;15:107–115. doi: 10.1016/S1369-703X(02)00192-4
  • Eskandarloo H, Badiei A, Behnajady MA. Application of response surface methodology for optimization of operational variables in photodegradation of phenazopyridine drug using TiO2/CeO2 hybrid nanoparticles. Desalin Water Treat. 2015;54:3300–3310. doi: 10.1080/19443994.2014.911705
  • Rauf MA, Ashraf SS. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J. 2009;151:10–18. doi: 10.1016/j.cej.2009.02.026
  • Sheidaei B, Behnajady MA. Mathematical kinetic modelling and representing design equation for a packed photoreactor with immobilised TiO2-P25 nanoparticles on glass beads in the removal of C.I. Acid Orange 7. Chem Process Eng. 2015;36:125–133. doi: 10.1515/cpe-2015-0010
  • Hao XG, Li HH, Zhang ZL, et al. Modeling and experimentation of a novel labyrinth bubble photoreactor for degradation of organic pollutant. Chem Eng Res Des. 2009;87:1604–1611. doi: 10.1016/j.cherd.2009.06.002
  • Pelaez M, de la Cruz AA, O’Shea K, et al. Effects of water parameters on the degradation of microcystin–LR under visible light-activated TiO2 photocatalyst. Water Res. 2011;45:3787–3796. doi: 10.1016/j.watres.2011.04.036
  • Behnajady MA, Yavari S, Modirshahla N. Investigation of adsorption capacity of TiO2-P25 nanoparticles in the removal of a mono-azo dye from aqueous solution: a comprehensive isotherm analysis. Chem Ind Chem Eng Q. 2014;20:97–107. doi: 10.2298/CICEQ120610105B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.