282
Views
12
CrossRef citations to date
0
Altmetric
Articles

Characterization of solid airborne particles deposited in snow in the vicinity of urban fossil fuel thermal power plant (Western Siberia)

, , , , &
Pages 2288-2303 | Received 06 Feb 2017, Accepted 06 Jul 2017, Published online: 20 Jul 2017

References

  • Sharma R, Pervez Y, Pervez S. Seasonal evaluation and spatial variability of suspended particulate matter in the vicinity of a large coal-fired power station in India – a case study. Environ Monit Assess. 2005;102:1–13. doi: 10.1007/s10661-005-1008-y
  • Nemmar A, Hoet PH, Vanquickenborne B. Passage of inhaled particles into the blood circulation in humans. Circulation. 2002;105:411–414. doi: 10.1161/hc0402.104118
  • Samet J, Rappold A, Graff D, et al. Concentrated ambient ultrafine particle exposure induces cardiac changes in young healthy volunteers. Am J Respir Crit Care Med. 2009;179:1034–1042. doi: 10.1164/rccm.200807-1043OC
  • Saet Y, Revich BA, Janin EP, et al. Environmental geochemistry [Geohimiya okruzhayushchej sredy]. Moscow: Nedra; 1990.
  • Raputa VF, Khodzher TV, Gorshkov AG, et al. Aerosol falls on snow cover on the outskirts of Siberian towns. J Aerosol Sci. 1998;29(Suppl.2):S807–S808. doi: 10.1016/S0021-8502(98)90586-9
  • Tentyukov MP. Geochemical cycle of atmospheric iron over Yamal and its impact on the content of iron compounds in tundra landscapes. Russ Meteorol Hydro. 2005;5:25–30.
  • Krastinyte V, Baltrenaite E, Lietuvninkas A. Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery. Environ Technol. 2013;34(6):757–763. doi: 10.1080/09593330.2012.715758
  • Baltrėnaitė E, Baltrėnas P, Lietuvninkas A, et al. Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environ Sci Pollut Res. 2014;21:299–313. doi: 10.1007/s11356-013-2046-6
  • Miler M, Gosar M. Chemical and morphological characteristics of solid metal-bearing phases deposited in snow and stream sediment as indicators of their origin. Environ Sci Pollut Res. 2015;22(3):1906–1918. doi: 10.1007/s11356-014-3589-x
  • Miler M, Gosar M. Application of SEM/EDS to environmental geochemistry of heavy metals. Geologija. 2009;52(1):69–78. doi: 10.5474/geologija.2009.008
  • Gregurek D, Melcher F, Pavlov VA, et al. Mineralogy and mineral chemistry of snow filter residues in the vicinity of the nickel-copper processing industry, Kola Peninsula, NW Russia. Miner Petrol. 1999;65(1-2):87–111. doi: 10.1007/BF01161578
  • Golokhvast KS, Shvedova AA. Galvanic manufacturing in the cities of Russia: potential source of ambient nanoparticles. Plos One. 2014;9(10):e110573. doi: 10.1371/journal.pone.0110573
  • Dong Z-W, Qin D-H, Qin X, et al. Characteristics of fly ash particles deposition in the snowpack of Laohugou Glacier No.12 in western Qilian Mountains, China. Huanjing Kexue. Environ Sci. 2014;35(2):504–512.
  • Zhang XL, Wu GJ, Yao TD, et al. Characterization of individual fly ash particles in surface snow at Urumqi Glacier No. 1, Eastern Tianshan. Chin Sci Bull. 2011;56(32):3464–3473. doi: 10.1007/s11434-011-4684-8
  • Talovskaya AV. Geochemical characteristic of dust atmospheric precipitations on the Tomsk area [Geohimicheskaya harakteristika pylevyh atmosfernyh vypadenij na territorii g. Tomska]. Atmos Ocean Optics. 2010;23:519–524. Russian.
  • Osipova NA, Filimonenko KA, Talovskaya AV, et al. Geochemical approach to human health risk assessment of inhaled trace elements in the vicinity of industrial enterprises in Tomsk, Russia. Hum Ecol Risk Assess. 2015;21:1664–1685. doi: 10.1080/10807039.2014.972912
  • Yazikov E, Talovskaya A, Norra S. Mineralogy and origin of Tomsk-Seversk nuclear facility aerosols in snow (Western Siberia, Russia). Book of Abstracts 11th Urban Environment Symposium; 2012 Sept 16–19; Karlsruhe, Germany; 2012. p. 116.
  • State report “On the state and Environmental Protection of the Tomsk region in 2014 [Sostoyanie okruzhayushchej sredy v Tomskoj oblasti v 2014]” [Internet]. Tomsk; [cited 2015 Oct 25]. Available from: http://priroda.tomsk.gov.ru/upload/File/doc/ecoobzor/gosudarstvennyy_doklad_o_sostoyanii_i_ohrane_okruzhaeyuschey_sredy_v_2014_g.pdf. Russian.
  • Russian State Standard for air pollution control [Rukovodstvo po kontrolyu zagryazneniya atmosfery]. Moscow: Goscomgidromet USSR; 1991. RD 52.04.186-89. Russian.
  • Russian State Standard for Laboratory filter paper. Specifications. [Bumaga fil’troval’naya laboratornaya. Tekhnicheskie usloviya]. Moscow: Standartinform; 2008; Russian State Standard 12026-76. Russian.
  • Reed SJB. Electron microprobe analysis and scanning electron microscopy in geology. New York (NY): Cambridge University Press; 2005.
  • Barthelmy D. [Internet]. The mineralogy database; 2010; [cited 2016 Feb 15]. Available from: http://webmineral.com/
  • Kantiranis N, Filippidis A, Georgakopoulos A. Investigation of the uptake ability of fly ashes produced after lignite combustion. J Environ Manage. 2005;76(2):119–123. doi: 10.1016/j.jenvman.2004.12.005
  • Vassilev SV. Phase mineralogy studies of solid waste products from coal burning at some Bulgarian thermoelectric power plants. Fuel. 1992;71(6):625–633. doi: 10.1016/0016-2361(92)90164-J
  • Goodarzi F. Morphology and chemistry of fine particles emitted from a Canadian coal-fired power plant. Fuel. 2006;85(3):273–280. doi: 10.1016/j.fuel.2005.07.004
  • Koukouzas NK, Zeng R, Perdikatsis V, et al. Mineralogy and geochemistry of Greek and Chinese coal fly ash. Fuel. 2006;85:2301–2309. doi: 10.1016/j.fuel.2006.02.019
  • Katrinak KA, Rez P, Perkes PR, et al. Fractal geometry of carbonaceous aggregates from an urban aerosol. Environ Sci Technol. 1993;27:539–547. doi: 10.1021/es00040a013
  • Chen Y, Shah N, Huggins FE, et al. Microanalysis of ambient particles from Lexington, KY, by electron microscopy. Atmos Environ. 2006;40(4):651–663. doi: 10.1016/j.atmosenv.2005.09.036
  • Bory AJM, Biscaye PE, Grousset FE. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys Res Let. 2003;30:1167. doi: 10.1029/2002GL016446
  • Lisitzin AP. Arid sedimentation in the oceans and atmospheric particulate matter. Russ Geol Geophys. 2011;52:1100–1133. doi: 10.1016/j.rgg.2011.09.006
  • Xu JZ, Kang SC, Hou SG, et al. Characterization of contemporary aeolian dust deposition on mountain glaciers of western China. Sci Cold Arid Reg. 2016;8:9–21.
  • Shevchenko VP, Vorob’ev SN, Kirpotin SN, et al. Investigations of insoluble particles in the snow cover of the Western Siberia from Tomsk to the Ob estuary [Issledovanie nerastvorimykh chastitz v snezhnom pokrove Zapadnoi Sibiri na profile ot Tomska lo estuariya Obi]. Atmos Ocean Optics. 2015;28:499–504. Russian.
  • Finkelman RB. Modes of occurrence of environmentally sensitive trace elements in coal. In: Swaine DJ, Goodarzi F, editors. Environmental aspects of trace elements in coal. Dordrecht: Kluwer Academic Publishers; 1995. p. 24–50.
  • Yossifova MG. Petrography, mineralogy and geochemistry of Balkan coals and their waste products. Int J Coal Geol. 2014;122:1–20. doi: 10.1016/j.coal.2013.12.007
  • Arbuzov SI, Mezhibor AM, Spears DA, et al. Nature of tonsteins in the Azeisk deposit of the Irkutsk coal Basin (Siberia, Russia). Int J Coal Geol. 2016;153(1):99–111. doi: 10.1016/j.coal.2015.12.001
  • Mitchell RS, Gluskoter HJ. Mineralogy of ash of some American coals: variations with temperature and source. Fuel. 1976;55:90–96. doi: 10.1016/0016-2361(76)90001-6
  • Jablonska M, Rietmeijer FJ, Janeczek J. Fine-grained barite in coal fly ash from the Upper Silesian industrial region. Environ Geol. 2001;40:941–948. doi: 10.1007/s002540100302
  • Yudovich Y, Ketris MP. Valuable trace elements in coal [Tzennye elementy-primesi v uglyakh]. Ekaterinburg: UrO RAN; 2006.
  • Huang K, Fu JS, Prikhodko VY, et al. Russian anthropogenic black carbon: emission reconstruction and Arctic black carbon simulation. J Geophys Res Atmos. 2015;120(21):11306–11333. doi: 10.1002/2015JD023358
  • Kozlov VS, Panchenko MV, Yausheva EP. Diurnal variations of the submicron aerosol and black carbon in the near-ground layer. Atmos Ocean Optics. 2011;24:30–38. doi: 10.1134/S102485601101009X
  • Zhao YC, Zhang JY, Sun JM, et al. Mineralogy, chemical composition, and microstructure of ferrospheres in fly ashes from coal combustion. Energ Fuel. 2006;20(4):1490–1497. doi: 10.1021/ef060008f
  • Zyryanov VV, Petrov SA, Matvienko AA. Characterization of spinel and magnetospheres of coal fly ashes collected in power plants in the former USSR. Fuel. 2011;90:486–492. doi: 10.1016/j.fuel.2010.10.006
  • Shevchenko V, Lisitzin A, Vinogradova A, et al. Heavy metals in aerosols over the seas of the Russian Arctic. Sci Total Environ. 2003;306(1–3):11–25. doi: 10.1016/S0048-9697(02)00481-3
  • Seredin VV. The Au–PGE mineralization at the Pavlovsk brown coal deposit, Primorye. Geol Ore Deposit. 2004;46(1):36–63.
  • Arbuzov SI, Ershov VV. Geochemistry of rare elements in coals of Siberia [Geohimiya redkih ehlementov v uglyah Sibiri]. Tomsk: D-Print; 2007.
  • Il’enok SS. Native elements in coals and coal ashes of Azeyskoe deposit of Irkutsk coal basin [Samorodnye ehlementy v uglyah i zolah uglej Azejskogo mestorozhdeniya Irkutskogo ugol’nogo bassejna]. Bull Tomsk Polytechnic University. 2013;323(1):65–71. Russian.
  • Wehner B, Wiedensohler A. Aerosol characterization of a natural gas and oil-fired heating plant. J Aerosol Sci. 1999;30(Supl.1):S113–S114. doi: 10.1016/S0021-8502(99)80068-8
  • Brewer E, Li Y, Finken B, et al. PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation. Atmos Environ. 2016;131:141–149. doi: 10.1016/j.atmosenv.2015.11.048
  • Brown P, Jonesa T, Bérubé K. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations. Environ Pollut. 2011;159:3324–3333. doi: 10.1016/j.envpol.2011.08.041
  • Richards RJ, Wusteman FS. The effects of silica dust and alveolar macrophages on lung fibroblasts grown. Life Sci. 1974;14:355–364. doi: 10.1016/0024-3205(74)90066-6
  • Lehnert BE. Defense mechanisms against inhaled particles and associated particle-cell interactions. In: Guthrie Jr GD, Mossman BT, editors. Reviews in mineralogy. vol. 28. Vermont: Mineralogical Society of America; 1993. p. 427-470.
  • Pope CA, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage. 2006;56(6):709–742. doi: 10.1080/10473289.2006.10464485
  • Bonetta S, Gianotti V, Bonetta S, et al. DNA damage in A549 cells exposed to different extracts of PM2.5 from industrial, urban and highway sites. Chemosphere. 2009;77(7):1030–1034. doi: 10.1016/j.chemosphere.2009.07.076
  • Dominici F, Peng RD, Bell ML, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. J Am Med Rec Assoc. 2006;295(10):1127–1134. doi: 10.1001/jama.295.10.1127
  • Gwinn MR, Vallyathan V. Nanoparticles: health effects−pros and cons. Environ Health Perspect. 2006;114:1818–1825.
  • Artamonova VG, Fishman BB, Lashina EL, et al. Clinical features of respiratory diseases caused by mullite dust. Med Tr Prom Ekol. 2000;10:17–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.