148
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effects of perlite and caustic soda on microorganism activities of leachate in a sequence batch reactor

, ORCID Icon, , , & ORCID Icon
Pages 2321-2334 | Received 08 Jul 2016, Accepted 27 Mar 2017, Published online: 02 Aug 2017

References

  • Renou S, Givaudan J, Poulain S, et al. Landfill leachate treatment: review and opportunity. J Hazard Mater. 2008;150(3):468–493. doi: 10.1016/j.jhazmat.2007.09.077
  • Clarke BO, Anumol T, Barlaz M, et al. Investigating landfill leachate as a source of trace organic pollutants. Chemosphere. 2015;127:269–275. doi: 10.1016/j.chemosphere.2015.02.030
  • Zhang D, Vahala R, Wang Y, et al. Microbes in biological processes for municipal landfill leachate treatment: community, function and interaction. Int Biodeter Biodegr. 2016;113:88–96. doi: 10.1016/j.ibiod.2016.02.013
  • Al-Wabel M, Al Yehya W, AL-Farraj AS, et al. Characteristics of landfill leachates and bio-solids of municipal solid waste (MSW) in Riyadh City, Saudi Arabia. J Saudi Soc Agric Sci. 2011;10(2):65–70.
  • Abdallaa KZ, Hammamb G. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. Int J Sci Basic Appl Res. 2014;13(1):42.
  • Mojiri A, Aziz HA, Zaman NQ, et al. Powdered ZELIAC augmented sequencing batch reactors (SBR) process for co-treatment of landfill leachate and domestic wastewater. J Environ Manage. 2014;139:1–14. doi: 10.1016/j.jenvman.2014.02.017
  • Yabroudi SC, Morita DM, Alem P. Landfill leachate treatment over nitritation/denitritation in an activated sludge sequencing batch reactor. APCBEE Procedia. 2013;5:163–168. doi: 10.1016/j.apcbee.2013.05.029
  • Wei Y, Ji M, Li R, et al. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Manage. 2012;32(3):448–455. doi: 10.1016/j.wasman.2011.10.008
  • Monclús H, Puig S, Coma M, et al. Nitrogen removal from landfill leachate using the SBR technology. Environ Technol. 2009;30(3):283–290. doi: 10.1080/09593330802622105
  • Miao L, Wang K, Wang S, et al. Advanced nitrogen removal from landfill leachate using real-time controlled three-stage sequence batch reactor (SBR) system. Bioresour Technol. 2014;159:258–265. doi: 10.1016/j.biortech.2014.02.058
  • Spagni A, Marsili-Libelli S. Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate. Bioresour Technol. 2009;100(2):609–614. doi: 10.1016/j.biortech.2008.06.064
  • Spagni A, Marsili-Libelli S, Lavagnolo MC. Optimisation of sanitary landfill leachate treatment in a sequencing batch reactor. Water Sci Technol. 2008;58(2):337. doi: 10.2166/wst.2008.399
  • Abood AR, Bao J, Du J, et al. Non-biodegradable landfill leachate treatment by combined process of agitation, coagulation, SBR and filtration. Waste Manage. 2014;34(2):439–447. doi: 10.1016/j.wasman.2013.10.025
  • Laitinen N, Luonsi A, Vilen J. Landfill leachate treatment with sequencing batch reactor and membrane bioreactor. Desalination. 2006;191(1):86–91. doi: 10.1016/j.desal.2005.08.012
  • Morling S. Nitrogen removal and heavy metals in leachate treatment using SBR technology. J Hazard Mater. 2010;174(1):679–686. doi: 10.1016/j.jhazmat.2009.09.104
  • Neczaj E, Kacprzak M, Kamizela T, et al. Sequencing batch reactor system for the co-treatment of landfill leachate and dairy wastewater. Desalination. 2008;222(1):404–409. doi: 10.1016/j.desal.2007.01.133
  • Al-Rekabi WS, Qiang H, Qiang WW. Review on sequencing batch reactors. Pak J Nutr. 2007;6(1):11–19.
  • Mahvi A. Sequencing batch reactor: a promising technology in wastewater treatment. J Environ Health Sci Eng. 2008;5(2):79–90.
  • Gray NF. Biology of wastewater treatment. Oxford: Oxford University Press; 2004.
  • Aghamohammadi N, Aziz H, Isa M, et al. Powdered activated carbon augmented activated sludge process for treatment of semi-aerobic landfill leachate using response surface methodology. Bioresour Technol. 2007;98(18):3570–3578. doi: 10.1016/j.biortech.2006.11.037
  • Lim PE, Lim SP, Seng CE, et al. Treatment of landfill leachate in sequencing batch reactor supplemented with activated rice husk as adsorbent. Chem Eng J. 2010;159(1):123–128. doi: 10.1016/j.cej.2010.02.064
  • Yu J, He C, Liu X, et al. Removal of perfluorinated compounds by membrane bioreactor with powdered activated carbon (PAC): adsorption onto sludge and PAC. Desalination. 2014;334(1):23–28. doi: 10.1016/j.desal.2013.08.007
  • Wang D, Hu QY, Li M, et al. Evaluating the removal of organic fraction of commingled chemical industrial wastewater by activated sludge process augmented with powdered activated carbon. Arab J Chem. 2015;9:1951–1961. doi: 10.1016/j.arabjc.2015.08.031
  • Tammaro M, Salluzzo A, Perfetto R, et al. A comparative evaluation of biological activated carbon and activated sludge processes for the treatment of tannery wastewater. J Environ Chem Eng. 2014;2(3):1445–1455. doi: 10.1016/j.jece.2014.07.004
  • Satyawali Y, Balakrishnan M. Effect of PAC addition on sludge properties in an MBR treating high strength wastewater. Water Res. 2009;43(6):1577–1588. doi: 10.1016/j.watres.2009.01.003
  • Hu QY, Li M, Wang C, et al. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater. J Hazard Mater. 2015;295:1–8. doi: 10.1016/j.jhazmat.2015.03.070
  • Asude A, Koklu R, Ozer C. The adsorption of dye removal from textile industry wastewater with natural adsorbents. J Selcuk Univ Nat Appl Sci. 2014;275–282.
  • Peyravi M, Jahanshahi M, Alimoradi M, et al. Old landfill leachate treatment through multistage process: membrane adsorption bioreactor and nanofitration. Bioprocess Biosyst Eng. 2016;39(12):1803–1816. doi: 10.1007/s00449-016-1655-0
  • Barakat M. New trends in removing heavy metals from industrial wastewater. Arab J Chem. 2011;4(4):361–377. doi: 10.1016/j.arabjc.2010.07.019
  • Thakur C, Dembla A, Srivastava VC, et al. Removal of 4-chlorophenol in sequencing batch reactor with and without granular-activated carbon. Desalin Water Treat. 2014;52:4404–4412. doi: 10.1080/19443994.2013.803684
  • Kong L, Xiong Y, Tian S, et al. Preparation and characterization of a hierarchical porous char from sewage sludge with superior adsorption capacity for toluene by a new two-step pore-fabricating process. Bioresour Technol. 2013;146:457–462. doi: 10.1016/j.biortech.2013.07.116
  • Henze M. Characterization of functional microorganism groups and substrate in activated sludge and wastewater by AUR, NUR and OUR. Interactions of wastewater, biomass and reactor configurations in biological treatment plants. Proceedings of the IAWPRC Specialised Seminar Held in Copenhagen; 1991 Aug 21–23; Denmark, Pergamon; 1992.
  • Eaton AD, Clesceri LS, Rice EW, et al. APHA: standard methods for the examination of water and wastewater. Centennial ed. Washington (DC): APHA, AWWA, WEF; 2005.
  • Lübbecke S, Vogelpohl A, Dewjanin W. Wastewater treatment in a biological high-performance system with high biomass concentration. Water Res. 1995;29(3):793–802. doi: 10.1016/0043-1354(94)00215-S
  • Karatas M, Dursun S, Argun ME. Methane production from anaerobic–aerobic sequential system treatment of Azo Dye Reactive Red 24. Environ Prog Sustain Energy. 2011;30(1):50–58. doi: 10.1002/ep.10449
  • Rensink J, Donker H. The effect of contact tank operation on bulking sludge and biosorption processes. Water Sci Technol. 1991;23(4–6):857–866. doi: 10.2166/wst.1991.0537
  • Palm JC, Jenkins D, Parker DS. Relationship between organic loading, dissolved oxygen concentration and sludge settleability in the completely-mixed activated sludge process. J Water Pollut Control Fed. 1980;52:2484–2506.
  • Jenkins D, Richard MG, Daigger GT. Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems. New York: Lewis Publishers c/o CRC, copublished with IWA Publishing London; 2004.
  • Atlas RM. Principles of microbiology. Dubuque, IA: William C Brown Pub; 1995.
  • Lobos J, Wisniewski C, Heran M, et al. Effects of starvation conditions on biomass behaviour for minimization of sludge production in membrane bioreactors. Water Sci Technol. 2005;51(6–7):35–44. doi: 10.2166/wst.2005.0619
  • Lobos J, Wisniewski C, Heran M, et al. Sequencing versus continuous membrane bioreactors: effect of substrate to biomass ratio (F/M) on process performance. J Memb Sci. 2008;317(1):71–77. doi: 10.1016/j.memsci.2007.08.041
  • Widdel F. Theory and measurement of bacterial growth. Di dalam Grundpraktikum Mikrobiologie. 2007;4:1–11.
  • Guo JS, Abbas AA, Chen YP, et al. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. J Hazard Mater. 2010;178:699–705. doi: 10.1016/j.jhazmat.2010.01.144
  • Wang ZC, Gao MC, Ren Y, et al. Effect of hydraulic retention time on performance of an anoxic–aerobic sequencing batch reactor treating saline wastewater. Int J Environ Sci Technol. 2015;12:2043–2054. doi: 10.1007/s13762-014-0594-z
  • Lim PE, Ong SA, Seng CE. Simultaneous adsorption and biodegradation processes in sequencing batch reactor (SBR) for treating copper and cadmium-containing wastewater. Water Res. 2002;36:667–675. doi: 10.1016/S0043-1354(01)00257-3
  • Ong SA, Toorisaka E, Hirata M, et al. Adsorption and toxicity of heavy metals on activated sludge. Sci Asia. 2010;36:204–209. doi: 10.2306/scienceasia1513-1874.2010.36.204
  • Ong SA, Lim PE, Seng CE. Effects of adsorbents and copper(II) on activated sludge microorganisms and sequencing batch reactor treatment process. J Hazard Mater. 2003;103(3):263–277. doi: 10.1016/j.jhazmat.2003.07.008
  • Zhang X, Li X, Zhang Q, et al. New insight into the biological treatment by activated sludge: the role of adsorption process. Bioresour Technol. 2014;153:160–164. doi: 10.1016/j.biortech.2013.11.084
  • Delavar M, Ghoreyshi A, Jahanshahi M, et al. Equilibria and kinetics of natural gas adsorption on multi-walled carbon nanotube material. RSC Adv. 2012;2(10):4490–4497. doi: 10.1039/c2ra01095j
  • Khalili S, Ghoreyshi A, Jahanshahi M. Carbon dioxide captured by multi-walled carbon nanotube and activated charcoal: a comparative study. Chem Indus Chem Eng Quarterly. 2013;19(1):153–164. doi: 10.2298/CICEQ120217050K

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.