885
Views
38
CrossRef citations to date
0
Altmetric
Articles

Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2

, , , & ORCID Icon
Pages 2353-2364 | Received 08 Feb 2017, Accepted 07 Jul 2017, Published online: 26 Jul 2017

References

  • Ding H, Wu Y, Zhang W, et al. Occurrence, distribution and risk assessment of antibiotics in the surface water of Poyang Lake, The largest freshwater lake in China. Chemosphere. 2017;184:137–147. doi: 10.1016/j.chemosphere.2017.05.148
  • Xu L, Ouyang W, Qian Y, et al. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environ Pollut. 2016;213:119–126. doi: 10.1016/j.envpol.2016.02.013
  • Glassmeyer ST, Furlong ET, Kolpin DW, et al. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci Total Environ. 2017;581-582:909–922. doi: 10.1016/j.scitotenv.2016.12.004
  • Baran W, Adamek E, Ziemiańska J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater. 2011;196:1–15. doi: 10.1016/j.jhazmat.2011.08.082
  • Loos R, Locoro G, Comero S, et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010;44:4115–4126. doi: 10.1016/j.watres.2010.05.032
  • Simazaki D, Kubota R, Suzuki T, et al. Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Res. 2015;76:187–200. doi: 10.1016/j.watres.2015.02.059
  • de Jesus Gaffney V, Almeida CM, Rodrigues A, et al. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res. 2015;72:199–208. doi: 10.1016/j.watres.2014.10.027
  • Archundia D, Duwig C, Lehembre F, et al. Antibiotic pollution in the Katakari subcatchment of the Titicaca Lake: major transformation products and occurrence of resistance genes. Chemosphere. 2017;576:671–682.
  • Pereira JHOS, Reis AC, Queirós D, et al. Insights into solar TiO2-assisted photocatalytic oxidation of two antibiotics employed in aquatic animal production, oxolinic acid and oxytetracycline. Sci Total Environ. 2013;463-464:274–283. doi: 10.1016/j.scitotenv.2013.05.098
  • Venieri D, Gounaki I, Bikouvaraki M, et al. Solar photocatalysis as disinfection technique: inactivation of Klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile. J Environ Manage. 2017;195:140–147. doi: 10.1016/j.jenvman.2016.06.009
  • Guo C, Wang K, Hou S, et al. H2O2 and/or TiO2 photocatalysis under UV irradiation for the removal of antibiotic resistant bacteria and their antibiotic resistance genes. J Hazard Mater. 2017;323:710–718. doi: 10.1016/j.jhazmat.2016.10.041
  • Tsai T-M, Chang H-H, Chang K-C, et al. A comparative study of the bactericidal effect of photocatalytic oxidation by TiO2 on antibiotic-resistant and antibiotic-sensitive bacteria. J Chem Technol Biot. 2010;85:1642–1653. doi: 10.1002/jctb.2476
  • Primo A, Corma A, Garcia H. Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys. 2011;13:886–910. doi: 10.1039/C0CP00917B
  • Wang P, Huang B, Dai Y, et al. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys. 2012;14:9813–9825. doi: 10.1039/c2cp40823f
  • Gomathi Devi L, Kavitha R. A review on plasmonic metal–TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl Surf Sci. 2016;360:601–622. doi: 10.1016/j.apsusc.2015.11.016
  • Jakob M, Levanon H, Kamat PV. Charge distribution between UV-irradiated TiO2 and gold nanoparticles:  determination of shift in the Fermi level. Nano Lett. 2003;3:353–358. doi: 10.1021/nl0340071
  • Korayem MH, Zakeri M. Dynamic modeling of manipulation of micro/nanoparticles on rough surfaces. Appl Surf Sci. 2011;257:6503–6513. doi: 10.1016/j.apsusc.2011.02.055
  • Daeinabi K, Korayem MH. Indentation analysis of nano-particle using nano-contact mechanics models during nano-manipulation based on atomic force microscopy. J Nanopart Res. 2011;13:1075–1091. doi: 10.1007/s11051-010-0096-y
  • Zhu W, Liu J, Yu S, et al. Ag loaded WO3 nanoplates for efficient photocatalytic degradation of sulfanilamide and their bactericidal effect under visible light irradiation. J Hazard Mater. 2016;318:407–416. doi: 10.1016/j.jhazmat.2016.06.066
  • Jia Y, Liu J, Cha S. Magnetically separable Au-TiO2/nanocube ZnFe2O4 composite for chlortetracycline removal in wastewater under visible light. J Ind Eng Chem. 2017;47:303–314. doi: 10.1016/j.jiec.2016.12.001
  • Soares OSGP, Pereira MFR, Órfão JJM, et al. Photocatalytic nitrate reduction over Pd–Cu/TiO2. Chem Eng J. 2014;251:123–130. doi: 10.1016/j.cej.2014.04.030
  • Devard A, Aghemo VS, Caballero Dorantes CA, et al. Pd and In addition onto Au nanoparticles supported on TiO2 as a catalytic formulation for NO3 reduction in water. Reac Kinet Mech Cat. 2017;120:39–54. doi: 10.1007/s11144-016-1102-x
  • Montoya IA, Viveros T, Dominguez JM, et al. On the effects of the sol-gel synthesis parameters on textural and structural characteristics of TiO2. Catal Lett. 1992;15:207–217. doi: 10.1007/BF00770913
  • Zanella R, Giorgio S, Henry CR, et al. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J Phys Chem B. 2002;106:7634–7642. doi: 10.1021/jp0144810
  • Durán-Álvarez JC, Avella E, Ramírez-Zamora RM, et al. Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au-Ag and Au-Cu) metallic nanoparticles supported on TiO2 under UV and simulated sunlight. Catal Today. 2016;266:175–187. doi: 10.1016/j.cattod.2015.07.033
  • Oros-Ruiz S, Zanella R, Prado B. Photocatalytic degradation of trimethoprim by metallic nanoparticles supported on TiO2-P25. J Hazard Mater. 2013;263:28–35. doi: 10.1016/j.jhazmat.2013.04.010
  • Sandoval A, Louis C, Zanella R. Improved activity and stability in CO oxidation of bimetallic Au–Cu/TiO2 catalysts prepared by deposition–precipitation with urea. Appl Catal B Environ. 2013;140–141:363–377. doi: 10.1016/j.apcatb.2013.04.039
  • Corma A, Garcia H. Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev. 2008;37:2096–2126. doi: 10.1039/b707314n
  • Casaletto MP, Longo A, Martorana A, et al. XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites. Surf Interface Anal. 2006;38:215–218. doi: 10.1002/sia.2180
  • You X, Chen F, Zhang J, et al. A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal Lett. 2005;102:247–250. doi: 10.1007/s10562-005-5863-5
  • Liu Z, Zhou C. Improved photocatalytic activity of nano CuO-incorporated TiO2 granules prepared by spray drying. Prog Nat Sci Mater Int. 2015;25:334–341. doi: 10.1016/j.pnsc.2015.07.005
  • Lalitha K, Sadanandam G, Kumari VD, et al. Highly stabilized and finely dispersed Cu2O/TiO2: A promising visible sensitive photocatalyst for continuous production of Hydrogen from glycerol:water mixtures. J Phys Chem C. 2010;114:22181–22189. doi: 10.1021/jp107405u
  • Nasuhoglu D, Yargeau V, Berk D. Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV radiation (λmax = 254 nm). J Hazard Mater. 2011;186:67–75. doi: 10.1016/j.jhazmat.2010.10.080
  • Canonica S, Meunier L, von Gunten U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Res. 2008;42:121–128. doi: 10.1016/j.watres.2007.07.026
  • Hu L, Flanders PM, Miller PL, et al. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res. 2007;41:2612–2626. doi: 10.1016/j.watres.2007.02.026
  • Xu L, Wang G, Ma F, et al. Photocatalytic degradation of an aqueous sulfamethoxazole over the metallic silver and Keggin unit codoped titania nanocomposites. Appl Surf Sci. 2012;258:7039–7046. doi: 10.1016/j.apsusc.2012.03.161
  • Pugazhenthiran N, Murugesan S, Sathishkumar P, et al. Photocatalytic degradation of ceftiofur sodium in the presence of gold nanoparticles loaded TiO2 under UV–visible light. Chem Eng J. 2014;241:401–409. doi: 10.1016/j.cej.2013.10.069
  • Pugazhenthiran N, Murugesan S, Anandan S. High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium. J Hazard Mater. 2013;263:541–549. doi: 10.1016/j.jhazmat.2013.10.011
  • Jodat A, Jodat A. Photocatalytic degradation of chloramphenicol and tartrazine using Ag/TiO2 nanoparticles. Desalination Water Treat. 2014;52:2668–2677. doi: 10.1080/19443994.2013.794115
  • Badawy MI, Souaya EMR, Gad-Allah TA, et al. Fabrication of Ag/TiO2 photocatalyst for the treatment of simulated hospital wastewater under sunlight. Environ Prog Sustain Energy. 2014;33:886–894. doi: 10.1002/ep.11869
  • Abellán MN, Bayarri B, Giménez J, et al. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B Environ. 2007;74:233–241. doi: 10.1016/j.apcatb.2007.02.017
  • Linnik O, Manuilov E, Snegir S, et al. Photocatalytic degradation of tetracycline hydrochloride in aqueous solution at ambient conditions stimulated by gold containing zinc-titanium oxide films. J Adv Oxid Technol. 2009;12:265–270.
  • Wang A, Li YY, Estrada AL. Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation. Appl Catal B Environ. 2011;102:378–386. doi: 10.1016/j.apcatb.2010.12.007
  • Cai Q, Hu J. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: decomposition pathways, residual antibacterial activity and toxicity. J Hazard Mater. 2017;323:527–536. doi: 10.1016/j.jhazmat.2016.06.006
  • Kobayashi M, Kurosu S, Yamaguchi R, et al. Removal of antibiotic sulfamethoxazole by zero-valent iron under oxic and anoxic conditions: removal mechanisms in acidic, neutral and alkaline solutions. J Environ Manage. 2017;200:88–96. doi: 10.1016/j.jenvman.2017.05.065
  • Van Doorslaer X, Demeestere K, Heynderickx PM, et al. UV-A and UV induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl Catal B Environ. 2011;101:540–547. doi: 10.1016/j.apcatb.2010.10.027
  • Niu J, Zhang L, Li Y, et al. Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: kinetics and mechanism. J Environ Sci. 2013;25:1098–1106. doi: 10.1016/S1001-0742(12)60167-3
  • Gmurek M, Horn H, Majewsky M. Phototransformation of sulfamethoxazole under simulated sunlight: transformation products and their antibacterial activity toward Vibrio fischeri. Sci Total Environ. 2015;538:58–63. doi: 10.1016/j.scitotenv.2015.08.014
  • Zhu W, Sun F, Goei R, et al. Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl Catal B Environ. 2017;207:93–102. doi: 10.1016/j.apcatb.2017.02.012
  • Chen P. A novel synthesis of Ti3+ self-doped Ag2O/TiO2 (p–n) nanoheterojunctions for enhanced visible photocatalytic activity. Mater Lett. 2016;163:130–133. doi: 10.1016/j.matlet.2015.10.064
  • Oros-Ruiz S, Zanella R, Collins SE, et al. Photocatalytic hydrogen production by Au–MxOy (M = Ag, Cu, Ni) catalysts supported on TiO2. Catal Commun. 2014;47:1–6. doi: 10.1016/j.catcom.2013.12.033
  • Lee SS, Bai H, Liu Z, et al. Novel-structured electrospun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Res. 2013;47:4059–4073. doi: 10.1016/j.watres.2012.12.044
  • Sobczyński A, Duczmal L, Dobosz A. Photocatalysis by illuminated titania:oxidation of hydroquinone and p-benzoquinone. Monatsh Chem/Chem Mon. 1999;130:377–384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.