136
Views
0
CrossRef citations to date
0
Altmetric
Articles

Overall effect of carbon production and nutrient release in sludge holding tank on mainstream biological nutrient removal efficiency

, &
Pages 2390-2410 | Received 09 Apr 2017, Accepted 11 Jul 2017, Published online: 11 Sep 2017

References

  • Yang SS, Guo WQ, Zhou XJ, et al. Optimization of operating parameters for sludge process reduction under alternating aerobic/oxygen-limited conditions by response surface methodology. Bioresour Technol. 2011;102:9843–9851. doi: 10.1016/j.biortech.2011.07.079
  • Chon DH, Rome M, Kim YM, et al. Investigation of the sludge reduction mechanism in the anaerobic side-stream reactor process using several control biological wastewater treatment processes. Water Res. 2011;45:6021–6029. doi: 10.1016/j.watres.2011.08.051
  • Rodriguez-Perez S, Fermoso FG. Influence of an oxic settling anoxic system on biomass yield, protozoa and filamentous bacteria. Bioresour Technol. 2016;200:170–177. doi: 10.1016/j.biortech.2015.09.106
  • Semblante GU, Hai FI, Ngo HH, et al. Sludge cycling between aerobic, anoxic and anaerobic regimes to reduce sludge production during wastewater treatment: performance, mechanisms, and implications. Bioresour Technol. 2014;155:395–409. doi: 10.1016/j.biortech.2014.01.029
  • Zhou Z, Qiao W, Xing C, et al. Characterization of dissolved organic matter in the anoxic–oxic-settling-anaerobic sludge reduction process. Chem Eng J. 2015;259:357–363. doi: 10.1016/j.cej.2014.07.129
  • Chen GH, An KJ, Saby S, et al. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process). Water Res. 2003;37:3855–3866. doi: 10.1016/S0043-1354(03)00331-2
  • Coma M, Rovira S, Canals J, et al. Minimization of sludge production by a side-stream reactor under anoxic conditions in a pilot plant. Bioresour Technol. 2013;129:229–235. doi: 10.1016/j.biortech.2012.11.055
  • Jönsson K, Jansen JLC. Hydrolysis of return sludge for production of easily biodegradable carbon: effect of pre-treatment, sludge age and temperature. Water Sci Technol. 2006;53:47–54. doi: 10.2166/wst.2006.405
  • Datta T, Liu Y, Goel R. Evaluation of simultaneous nutrient removal and sludge reduction using laboratory scale sequencing batch reactors. Chemosphere. 2009;76:697–705. doi: 10.1016/j.chemosphere.2009.02.040
  • Saby S, Djafer M, Chen GH. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process. Water Res. 2003;37:11–20. doi: 10.1016/S0043-1354(02)00253-1
  • Goel RK, Noguera DR. Evaluation of sludge yield and phosphorus removal in a cannibal solids reduction process. J Environ Eng. 2006;132:1331–1337. doi: 10.1061/(ASCE)0733-9372(2006)132:10(1331)
  • Chudoba P, Morel A, Capdeville B. The case of both energetic uncoupling and metabolic selection of microorganisms in the OSA activated sludge system. Environ Technol. 1992;13:761–770. doi: 10.1080/09593339209385207
  • Ye F-X, Zhu R-F, Li Y. Effect of several factors on peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis. J Chem Technol Biotechnol. 2007;82:1115–1121. doi: 10.1002/jctb.1775
  • Gao Y, Peng Y, Zhang J, et al. Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process. Bioresour Technol. 2011;102:4091–4097. doi: 10.1016/j.biortech.2010.12.051
  • Huang P, Goel R. Response of a sludge-minimizing lab-scale BNR reactor when the operation is changed to real primary effluent from synthetic wastewater. Water Res. 2015;81:301–310. doi: 10.1016/j.watres.2015.04.035
  • Barnard J, Houweling D, Analla H, et al. Saving phosphorus removal at the Henderson NV plant. Water Sci Technol. 2012;65:1318–1322. doi: 10.2166/wst.2012.022
  • Vollertsen J, Petersen G, Borregaard VR. Hydrolysis and fermentation of activated sludge to enhance biological phosphorus removal. Water Sci Technol. 2006;53:55–64. doi: 10.2166/wst.2006.406
  • Kobylinski E, Barnard J, Massart N, et al. Starting up a 5-stage Bardenpho plant with in-line fermentation - one step at a time. In: Proceedings of the Water Environment Federation. Chicago; 2013.
  • Ucisik AS, Henze M. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids. Water Res. 2008;42:3729–3738. doi: 10.1016/j.watres.2008.06.010
  • Yuan H, Chen Y, Zhang H, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ Sci Technol. 2006;40:2025–2029. doi: 10.1021/es052252b
  • Liu XL, Liu H, Du GC, et al. Improved bioconversion of volatile fatty acids from waste activated sludge by pretreatment. Water Environ Res. 2009;81:13–20. doi: 10.2175/106143008X304640
  • Chen Y, Jiang S, Yuan H, et al. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 2007;41:683–689. doi: 10.1016/j.watres.2006.07.030
  • Yuan Q, Sparling R, Oleszkiewicz J. VFA generation from waste activated sludge: effect of temperature and mixing. Chemosphere. 2011;82:603–607. doi: 10.1016/j.chemosphere.2010.10.084
  • Yuan Q, Baranowski M, Oleszkiewicz JA. Effect of sludge type on the fermentation products. Chemosphere. 2010;80:445–449. doi: 10.1016/j.chemosphere.2010.04.026
  • Yuan Q, Oleszkiewicz JA. Biomass fermentation to augment biological phosphorus removal. Chemosphere. 2010;78:29–34. doi: 10.1016/j.chemosphere.2009.09.057
  • Yan P, Guo J-S, Wang J, et al. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process. Bioresour Technol. 2015;183:181–187. doi: 10.1016/j.biortech.2015.02.070
  • Li X, Chen H, Hu L, et al. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal. Environ Sci Technol. 2011;45:1834–1839. doi: 10.1021/es1031882
  • Houweling D, Dold P, Barnard J. Theoretical limits to biological phosphorus removal: rethinking the influent COD:N:P ratio. In: Proceedings of the Water Environment Federation New Orleans: WEFTEC; 2010.
  • Lopez C, Pons MN, Morgenroth E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal. Water Res. 2006;40:1519–1530. doi: 10.1016/j.watres.2006.01.040
  • Mino T, Kawakami T, Matsuo T. Location of phosphorus in activated sludge and function of intracellular polyphosphates in biological phosphorus removal process. Water Sci Technol. 1985;17:93–106. doi: 10.2166/wst.1985.0122
  • APHA, Standard methods for the examination of water and wastewater. 22nd ed. Washington (DC): American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF); 2012.
  • Hao X-D, Wang Q-L, Zhu J-Y, et al. Microbiological endogenous processes in biological wastewater treatment systems. Crit Rev Environ Sci Technol. 2010;40:239–265. doi: 10.1080/10643380802278901
  • Kampas P, Parsons S, Pearce P, et al. An internal carbon source for improving biological nutrient removal. Bioresour Technol. 2009;100:149–154. doi: 10.1016/j.biortech.2008.05.023
  • Foladori P, Velho VF, Costa RHR, et al. Concerning the role of cell lysis-cryptic growth in anaerobic side-stream reactors: the single-cell analysis of viable, dead and lysed bacteria. Water Res. 2015;74:132–142. doi: 10.1016/j.watres.2015.01.042
  • Eliosov B, Argaman Y. Hydrolysis of particulate organics in activated sludge systems. Water Res. 1995;29:155–163. doi: 10.1016/0043-1354(94)E0109-J
  • Eastman J, Ferguson JF. Solubilization organic phase of carbon anaerobic particulate during the digestion acid. J Water Pollut Control Fed. 1981;53:352–366.
  • Morgenroth E, Kommedal R, Harremoës P. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater treatment - A review. Water Sci Technol. 2002;45:25–40. doi: 10.2166/wst.2002.0091
  • Grady CJ, Daigger G, Love N, et al. Biological wastewater treatment. 3rd ed. Boca Raton (FL): CRC Press; 2011.
  • Lu H, Keller J, Yuan Z. Endogenous metabolism of Candidatus Accumulibacter phosphatis under various starvation conditions. Water Res. 2007;41:4646–4656. doi: 10.1016/j.watres.2007.06.046
  • Vargas M, Yuan Z, Pijuan M. Effect of long-term starvation conditions on polyphosphate- and glycogen-accumulating organisms. Bioresour Technol. 2013;127:126–131. doi: 10.1016/j.biortech.2012.09.117
  • Wang Y, Geng J, Peng Y, et al. A comparison of endogenous processes during anaerobic starvation in anaerobic end sludge and aerobic end sludge from an anaerobic/anoxic/oxic sequencing batch reactor performing denitrifying phosphorus removal. Bioresour Technol. 2012;104:19–27. doi: 10.1016/j.biortech.2011.09.049
  • Pijuan M, Saunders AM, Guisasola A, et al. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source. Biotechnol Bioeng. 2004;85:56–67. doi: 10.1002/bit.10813
  • Randall AA, Liu YH. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal. Water Res. 2002;36:3473–3478. doi: 10.1016/S0043-1354(02)00047-7
  • Chen Y, Randall AA, McCue T. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Res. 2004;38:27–36. doi: 10.1016/j.watres.2003.08.025
  • Smolders GJF, Van der Meij J, Van Loosdrecht MCM, et al. A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process. Biotechnol Bioeng. 1995;47:277–287. doi: 10.1002/bit.260470302
  • Ning X, Qiao W, Zhang L, et al. Microbial community in anoxic – oxic – settling – anaerobic sludge reduction process revealed by 454 pyrosequencing analysis. Can J Micobiology. 2014;60:799–809. doi: 10.1139/cjm-2014-0263
  • Stokholm-Bjerregaard M, Albertsen M, Nguyen HTT, et al. Can return-sludge-sidestream hydrolysis control GAOs in full-scale. In: Nutrient removal and recovery: moving innovation into practice. Gdańsk; 2015.
  • Tu Y, Schuler AJ. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater. Environ Sci Technol. 2013;47:3816–3824. doi: 10.1021/es304846s
  • Barnard JL, Yu W, Steichen MT, et al. Design of large BNR plant for state capital of California. In: 12th IWA Spec. Conf. Des. Oper. Econ. Large Wastewater Treat. Plants Conf. Prague; 2015.
  • Satoh H, Ramey W, Koch F, et al. Anaerobic substrate uptake by the enhanced biological phosphorus removal activated sludge treating real sewage. Water Sci Technol. 1996;34:9–16. doi: 10.2166/wst.1996.0350
  • Wentzel MC, Lotter LH, Loewenthal RE, et al. Metabolic behavior of Acinetobacter spp in enhanced biological phosphorus removal - a biochemical-model. Water Sa. 1986;12:209–224.
  • Ucisik AS, Henze M. Biological hydrolysis and acidification of sludge under anaerobic conditions: The effect of sludge type and origin on the production and composition of volatile fatty acids. Water Res. 2008;42:3729–3738. doi: 10.1016/j.watres.2008.06.010
  • Vollertsen J, Petersen G, Borregaard VR. Hydrolysis and fermentation of activated sludge to enhance biological phosphorus removal. Water Sci Technol. 2006;53:55–64. doi: 10.2166/wst.2006.406

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.