401
Views
16
CrossRef citations to date
0
Altmetric
Articles

Removal of estrone, 17β-estradiol, and estriol from sewage and cow dung by immobilized Novosphingobium sp. ARI-1

, , , &
Pages 2423-2433 | Received 28 Jul 2016, Accepted 11 Jul 2017, Published online: 27 Jul 2017

References

  • Yu CP, Deeb RA, Chu KH. Microbial degradation of steroidal estrogens. Chemosphere. 2013;91:1225–1235. doi: 10.1016/j.chemosphere.2013.01.112
  • Jobling S, Nolan M, Tyler CR, et al. Widespread sexual disruption in wild fish. Environ Sci Technol. 1998;32:2498–2506. doi: 10.1021/es9710870
  • Morthorst JE, Brandelavridsen N, Korsgaard B, et al. 17β-Estradiol causes abnormal development in embryos of the viviparous eelpout. Environ Sci Technol. 2014;48:14668–14676. doi: 10.1021/es5046698
  • Nakada N, Nyunoya H, Nakamura M, et al. Identification of estrogenic compounds in wastewater effluent. Environ Toxicol Chem. 2004;23:2807–2815. doi: 10.1897/03-699.1
  • Baronti C, Curini R, D’Ascenzo G, et al. Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environ Sci Technol. 2000;34:5059–5066. doi: 10.1021/es001359q
  • Matsui S, Takigami H, Matsuda T. Estrogen and estrogen mimics contamination in water and the role of sewage treatment. Water Sci Technol. 2000;42:173–179. doi: 10.2166/wst.2000.0265
  • Liu X, Shi J, Zhang H, et al. Estimating estrogen release and load from humans and livestock in Shanghai, China. J Environ Qual. 2014;43:568–577. doi: 10.2134/jeq2013.08.0328
  • Zhou Y, Zha J, Xu Y, et al. Occurrences of six steroid estrogens from different effluents in Beijing, China. Environ Monit Assess. 2012;184:1719–1729. doi: 10.1007/s10661-011-2073-z
  • Rocha MJ, Ribeirobc M, Ribeiroab C, et al. Endocrine disruptors in the Leca River and nearby Porto Coast (NW Portugal): presence of estrogenic compounds and hypoxic conditions. Toxicol Environ Chem. 2012;94:262–274. doi: 10.1080/02772248.2011.644291
  • Beck IC, Bruhn R, Gandrass J. Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere. 2006;63:1870–1878. doi: 10.1016/j.chemosphere.2005.10.022
  • Zhang QQ, Zhao JL, Ying GG, et al. Emission estimation and multimedia fate modeling of seven steroids at the river basin scale in China. Environ Sci Technol. 2014;48:7982–7992. doi: 10.1021/es501226h
  • Raman DR, Williams EL, Layton AC, et al. Estrogen content of dairy and swine wastes. Environ Sci Technol. 2004;38:3567–3573. doi: 10.1021/es0353208
  • Liu S, Ying GG, Zhang RQ, et al. Fate and occurrence of steroids in swine and dairy cattle farms with different farming scales and wastes disposal systems. Environ Pollut. 2012;170:190–201. doi: 10.1016/j.envpol.2012.07.016
  • Whidbey CM, Daumit KE, Nguyen TH, et al. Photochemical induced changes of in vitro estrogenic activity of steroid hormones. Water Res. 2012;46:5287–5296. doi: 10.1016/j.watres.2012.07.016
  • Andersen H, Siegrist H, Halling-Sørensen B, et al. Fate of estrogens in a municipal sewage treatment plant. Environ Sci Technol. 2003;37:4021–4026. doi: 10.1021/es026192a
  • Panter GH, Thompson RS, Beresford N, et al. Transformation of a non-oestrogenic steroid metabolite to an oestrogenically active substance by minimal bacterial activity. Chemosphere. 1999;38:3579–3596. doi: 10.1016/S0045-6535(98)00572-4
  • Hashimoto T, Onda K, Morita T, et al. Contribution of the estrogen-degrading bacterium Novosphingobium sp Strain JEM-1 to estrogen removal in wastewater treatment. J Environ Eng. 2010;136:890–896. doi: 10.1061/(ASCE)EE.1943-7870.0000218
  • Bergero MF, Lucchesi GI. Degradation of cationic surfactants using Pseudomonas putida A ATCC 12633 immobilized in calcium alginate beads. Biodegradation. 2013;24:353–364. doi: 10.1007/s10532-012-9592-3
  • Mulla SI, Talwar MP, Bagewadi ZK. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1, Chemosphere. 2013;90:1920–1924. doi: 10.1016/j.chemosphere.2012.10.030
  • Tanaka H, Ohta T, Harada S, et al. Development of a fermentation method using immobilized cells under unsterile conditions.1.Protection of immobilized cells against anti-microbial substances. Appl Microbiol Biotechnol. 1994;41:544–550. doi: 10.1007/BF00178486
  • Zohar-Perez C, Chernin L, Chet I. A structure of dried cellular alginate matrix containing fillers provides extra protection for microorganisms against UVC radiation. Radiat Res. 2003;160:198–204. doi: 10.1667/RR3027
  • Fukuhara T, Iwasaki S, Kawashima M, et al. Adsorbability of estrone and 17β-estradiol in water onto activated carbon. Water Res. 2006;40:241–248. doi: 10.1016/j.watres.2005.10.042
  • Snyder SA, Adham S, Redding AM, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceutical. Desalination. 2007;202:156–181. doi: 10.1016/j.desal.2005.12.052
  • Zheng W, Yates SR, Bradford SA. Analysis of steroid hormones in a typical dairy waste disposal system. Environ Sci Technol. 2008;42:530–535. doi: 10.1021/es071896b
  • Wang CC, Lee CM, Kuan CH. Removal of 2,4-dichlorophenol by suspended and immobilized Bacill us insolitus. Chemospher. 2000;41:447–452. doi: 10.1016/S0045-6535(99)00263-5
  • Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds: An overview. J Environ Manag. 2007;85:496–512. doi: 10.1016/j.jenvman.2007.06.009
  • Fujii K, Kikuchi S, Satomi M, et al. Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Appl Environ Microb. 2002;68:2057–2060. doi: 10.1128/AEM.68.4.2057-2060.2002
  • Xu RF, Sun MX, Liu J. Isolation, identification and characterization of a diethylstilbestrol-degrading bacterial strain Serratia sp. Environ Sci. 2014;35:3169–3174.
  • Fu YJ, Ling WT, Dong CX. Estrogens determination of livestock dung based on UE-SPE-HPLC/FLD. Chin J Appl Ecol. 2013;24:3280–3288.
  • Ito A, Miura J, Ishikawa N, et al. Biological oxidation of arsenite in synthtic groundwater using immobilised bacteria. Water Res. 2012;46:4825–4831. doi: 10.1016/j.watres.2012.06.013
  • Ahmad SA, Shamaan NA, Arif NM, et al. Enhanced phenol degradation by immobilized Acinetobacter sp. Strain AQ5NOL 1. World J Microbiol Biotechnol. 2012;28:347–352. doi: 10.1007/s11274-011-0826-z
  • Ma C, Qin D, Sun Q, et al. Removal of environmental estrogens by bacteria cell immobilization technique. Chemosphere. 2016;144:607–614. doi: 10.1016/j.chemosphere.2015.09.014
  • Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71–78. doi: 10.1016/0167-7799(90)90139-O
  • Cao Q, Yu Q, Connell DW. Degradation rate constants of steroids in sewage treatment works and receiving water. Environ Technol. 2008;29:1321–1330. doi: 10.1080/09593330802393244
  • Coleman NP, Crofcheck CL, Nokes SE, et al. Effects of growth media pH and reaction water activity on the conversion of acetophenone to (S)-1-phenylethanol by Saccharomyces cerevisiae immobilized on Celite 635 and in calcium alginate. Trans Asabe. 2009;52:665–671. doi: 10.13031/2013.26805
  • Hsu HF, Jhuo YS, Kumar M, et al. Simultaneous sulfate reduction and copper removal by a PVA-immobilized sulfate reducing bacterial culture. Bioresource Technol. 2010;101:4354–4361. doi: 10.1016/j.biortech.2010.01.094
  • Behera S, Kar S, Mohanty RC, et al. Comparative study of bio-ethanol production from mahula (Madhuca latifolia L.) flowers by Saccharomyces cerevisiae cells immobilized in agar and Ca-alginate matrices. Appl Energy. 2010;87:96–100. doi: 10.1016/j.apenergy.2009.05.030
  • Sergio AMD, Bustos TY. Biodegradation of wastewater pollutants by activated sludge encapsulated inside calcium alginate beads in a tubular packed bed reactor. Biodegradation. 2009;20:709–715. doi: 10.1007/s10532-009-9258-y
  • Gouda MK. Immobilization of Rhodococcus sp. DG for efficient degradation of phenol, Fresen. Environ Bull. 2007;16:1655–1661.
  • Ha J, Engler C, Wild J. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Bioresource Technol. 2009;100:1138–1142. doi: 10.1016/j.biortech.2008.08.022
  • De-Bashan LE, Bashan Y, Moreno M, et al. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can J Microbiol. 2002;48:514–521. doi: 10.1139/w02-051
  • Beshay U, Abdelhaleem D, Moawad H, et al. Phenol biodegradation by free and immobilized Acinetobacter. Biotechnol Lett. 2002;24(24):1295–1297. doi: 10.1023/A:1016222328138
  • Dong YW, Zhang YQ, Tu BJ, et al. Immobilization of ammonia-oxidizing bacteria by calcium alginate. Ecol Eng. 2014;73:809–814. doi: 10.1016/j.ecoleng.2014.09.020
  • Hazaimeh M, Mutalib SA, Abdullah PS, et al. Enhanced crude oil hydrocarbon degradation by self-immobilized bacterial consortium culture on sawdust and oil palm empty fruit bunch. Ann Microbiol. 2014;64:1769–1777. doi: 10.1007/s13213-014-0821-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.