454
Views
15
CrossRef citations to date
0
Altmetric
Articles

Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses

, , &
Pages 2715-2723 | Received 09 Jan 2017, Accepted 04 Aug 2017, Published online: 24 Aug 2017

References

  • Baik OD, Mittal GS. Heat transfer coefficients during deep-fat frying of a tofu disc. Trans ASAE. 2002;45:1493–1499.
  • Fakhrùl- Razi LA, Pendashteh A, Abdullah LC, et al. Review of technologies for oil and gas produced water treatment. J Hazard Mater. 2009;170(2–3):530–551. doi: 10.1016/j.jhazmat.2009.05.044
  • Kriipsalu M, Marques M, Nammari DR, et al. Bio-treatment of oily sludge: the contribution of amendment material to the content of target contaminants, and the biodegradation dynamics. J Hazard Mater. 2007;141(2):591–606.
  • Guimaraes AKV, Chiavone O, do Nascimento CAO, et al. Estudo da caracterização da borra de petróleo e processo de extração do óleo. Eng Sanit Ambient. 2016;21:265–274. doi: 10.1590/s1413-41522016139564
  • Zhou XH, Jia HZ, Qu CT, et al. Low-temperature co-pyrolysis behaviors and kinetics of oily sludge: effect of agricultural biomass. Environ Technol. 2017;(3):361–369. doi: 10.1080/09593330.2016.1194481
  • Mater L, Sperb RM, Madureira LAS, et al. Proposal of a sequential treatment methodology for the safe reuse of oil sludge-contaminated soil. J Hazard Mater B. 2006;136:967–971. doi: 10.1016/j.jhazmat.2006.01.041
  • Rocha ORSD, Dantas RF, Duarte MMMB, et al. Oil sludge treatment by photocatalysis applying black and white light. Chem Eng J. 2010;157:80–85. doi: 10.1016/j.cej.2009.10.050
  • Roldán-Carrillo T, Castorena-Cortés G, Zapata-Pefinasco I, et al. Aerobic biodegradation of sludge with high hydrocarbon content generated by a Mexican natural gas processing facility. J Environ Manage. 2012;95:S93–S98. doi: 10.1016/j.jenvman.2011.04.014
  • Zubaidy EAH, Abouelnasr DM. Fuel recovery from waste oily sludge using solvent extraction. Process Saf Environ. 2010;88:318–326. doi: 10.1016/j.psep.2010.04.001
  • Li CT, Lee WJ, Mi HH, et al. PAH emission from the incineration of waste oily sludge and PE plastic mixtures. Sci Total Environ. 1995;170(3):171–183. doi: 10.1016/0048-9697(95)04705-X
  • Yan P, Lu M, Yang Q, et al. Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing pseudomonas. Bioresour Technol. 2012;116(13):24–28. doi: 10.1016/j.biortech.2012.04.024
  • Liu M, Huang HP, Li NX. Recent development in treatment of oily sludge. J Hazard Mater. 2016;39:3515–3525.
  • Beis SH, Onay O, Kockar OM. Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renew Energy. 2002;26(1):21–32. doi: 10.1016/S0960-1481(01)00109-4
  • Hu GJ, Li JB, Huang SH, et al. Oil recovery from petroleum sludge through ultrasonic assisted solvent extraction. J Environ Sci Health A. 2016;51:921–929. doi: 10.1080/10934529.2016.1191308
  • Saha B, Maiti AK, Ghoshal AK. Model-free method for isothermal and nonisothermal decomposition kinetics analysis of PET sample. Thermochim Acta. 2006;444(1):46–52. doi: 10.1016/j.tca.2006.02.018
  • Han M, Yu L, Chen YH. Study on treatment of petrochemical sludge by advanced oxidation process. Oxid Commun. 2016;39:1663–1669.
  • Adam J, Blazsó M, Mészáros E, et al. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts. Fuel. 2005;84(12–13):1494–1502.
  • Chen YR. Microwave pyrolysis of oily sludge with activated carbon. Environ Technol. 2016;37:3139–3145. doi: 10.1080/09593330.2016.1178333
  • Fonts I, Gea G, Azuara M, et al. Sewage sludge pyrolysis for liquid production: a review. Renew Sust Energ Rev. 2012;16(5):2781–2805. doi: 10.1016/j.rser.2012.02.070
  • Deng SH, Wang XB, Tan HZ, et al. Experimental and modeling study of the long cylindrical oily sludge drying process. Appl Therm Engineer. 2015;91:354–362. doi: 10.1016/j.applthermaleng.2015.08.054
  • Hu GJ, Li JB, Zhang XY, et al. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. J Environ Manage. 2017;192:234–242. doi: 10.1016/j.jenvman.2017.01.069
  • Fortesa ICP, Baugh PJ. Pyrolysis–GC/MS studies of vegetable oils from macauba fruit. J Anal Appl Pyrolysis. 2004;72:103–111. doi: 10.1016/j.jaap.2004.03.005
  • International Energy Agency . World Energy Outlook 2000. Paris: IEA; 2000.
  • Abd Elhafez SE, Hamad HA, Zaatout GAA, et al. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environ Sci Pollut Res. 2017;24:1397–1415. doi: 10.1007/s11356-016-7891-7
  • Boudjemaa A, Bachari K, Trari M. Photo-induced hydrogen on iron hexagonal mesoporous silica (Fe-HMS) photo-catalyst. Int J Energy Res. 2013;37:171–178. doi: 10.1002/er.1880
  • ISO 1928:2009 . Solid mineral fuels – Determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value.
  • Silva LJ, Alves FC, Francfia FP. A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manage Res. 2012: 1–15.
  • Guo S, Li G, Qu J, et al. Improvement of acidification on dewaterability of oily sludge from flotation. Chem Eng J. 2011;168(2):746–751. doi: 10.1016/j.cej.2011.01.070
  • Jacques DF, Bock J. Hydrophobically associating polymers for oily water clean-up: Donald F Jacques, Jan Bock assigned to Exxon Research and Engineering Company. Environ Int. 1988;14(4):XVI.
  • Jean DS, Chu CP, Lee DJ. Freeze/thaw treatment of oily sludge from petroleum refinery plant. Sep Sci Technol. 2001;36:2733–2746. doi: 10.1081/SS-100107222
  • Jean DS, Lee DJ, Wu JCS. Separation of oil from oily sludge by freezing and thawing. Water Res. 1999;33(7):1756–1759. doi: 10.1016/S0043-1354(99)00005-6
  • Guohua C, Gaohong H. Separation of water and oil from water-in-oil emulsion by freeze/thaw method. Sep Purif Technol. 2003;31(1):83–89. doi: 10.1016/S1383-5866(02)00156-9
  • Srinivasan P, Sarmah AK, Smernik R, et al. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. Sci Total Environ. 2015;512-513:495–505. doi: 10.1016/j.scitotenv.2015.01.068
  • Thanatawee P, Rukthong W, Sunphorka S, et al. Effect of biomass compositions on combustion kinetic parameters using response surface methodology. Int J Chem React Eng. 2016;14(1):517–526.
  • Shie JL, Chang CY, Lin JP, et al. Resources recovery of oil sludge by pyrolysis: kinetics study. J Chem Technol Biot. 2000;75(6):1–8.
  • Bridgwater AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org Geochem. 1999;30(12):1479–1493. doi: 10.1016/S0146-6380(99)00120-5
  • Fan YS, Cai YX, Li XH, et al. Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the simplex lattice mixture design method. Energ Convers Manage. 2017;138:106–118. doi: 10.1016/j.enconman.2017.01.075
  • Santos OSH, da Silva MC, Silva VR, et al. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J Hazard Mater. 2017;324:406–413. Available from: http://www.elsevier.com/locate/jhazmat. doi: 10.1016/j.jhazmat.2016.11.004
  • Yang W, Shimanouchi T, Kimura Y. Characterization of the residue and liquid products produced from husks of nuts from Carya cathayensis Sarg. by hydrothermal carbonization. ACS Sustain Chem Eng. 2015;3:591–598. doi: 10.1021/acssuschemeng.5b00103
  • Schmidt H, Kaminsky W. Pyrolysis of oil sludge in a fluidised bed reactor. Chemosphere. 2001;45:285–290. doi: 10.1016/S0045-6535(00)00542-7
  • Karayildirim T, Yanika J, Yuksel M, et al. Characterisation of products from pyrolysis of waste sludges. Fuel. 2006;85(10–11):1498–1508. doi: 10.1016/j.fuel.2005.12.002
  • Shen L, Zhang DK. Low-temperature pyrolysis of sewage sludge and putrescible garbage for fuel oil production. Fuel. 2005;84(7):809–815. doi: 10.1016/j.fuel.2004.11.024
  • Czernik S, Bridgwater AV. Overview of applications of biomass fast pyrolysis oil. Energ Fuel. 2004;18:590–598. doi: 10.1021/ef034067u
  • Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis liquids from biomass. Renew Sust Energ Rev. 2007;11:1056–1086. doi: 10.1016/j.rser.2005.07.008
  • Wang ZQ, Guo QJ, Liu XM, et al. Low temperature pyrolysis characteristics of oil sludge under various heating conditions. Energ Fuel. 2007;21:957–962. doi: 10.1021/ef060628g
  • Marin N, Collura S, Sharypov VI, et al. Copyrolysis of wood biomass and synthetic polymers mixtures. Part II: characterisation of the liquid phases. J Anal Appl Pyrol. 2002;65:41–55. doi: 10.1016/S0165-2370(01)00179-6
  • Control standards for pollutants in sludges from agricultural use GB4284-84.
  • Huang ZB, Liu BS, Tang XY, et al. Performance of rare earth oxide doped Mn-based sorbent on various silica supports for hot coal gas desulfurization. Fuel. 2016;177:217–225. doi: 10.1016/j.fuel.2016.03.009
  • Pánek P, Kostura B, Čepeláková I, et al. Pyrolysis of oil sludge with calcium-containing additive. J Anal Appl Pyrol. 2014;108:274–283. doi: 10.1016/j.jaap.2014.04.005
  • Hu XY, Dong CQ, Yang YP, et al. The effect of biomass pyrolysis gas reburning on N2O emission in a coal-fired fluidized bed boiler. Energy Sci Technol. 2011;56:1429–1433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.