404
Views
7
CrossRef citations to date
0
Altmetric
Articles

Removal of organic matter and ammoniacal nitrogen from landfill leachate using the UV/H2O2 photochemical process

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 793-806 | Received 03 Jul 2017, Accepted 18 Nov 2017, Published online: 04 Dec 2017

References

  • Christensen TH, Kjeldsen P. Basic biochemical processes in landfills. In: Christensen TH, Cossu R, Stegmann R, editors. Sanitary landfilling: process, technology and environmental impact. London: Academic Press; 1989. p. 592.
  • Christensen TH, Kjeldsen P, Bjerg PL, et al. Biogeochemistry of landfill leachate plumes. Appl Geochem. 2001;16:659–718. doi: 10.1016/S0883-2927(00)00082-2
  • Christensen TH, Kjeldsen P, Albrechtsen H, et al. Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol. 1994;24:119–202. doi: 10.1080/10643389409388463
  • Wang F, Smith DW, El-Din MG. Application of advanced oxidation methods for landfill leachate treatment – a review. J Environ Eng Sci. 2003;2:413–427. doi: 10.1139/s03-058
  • Mannarino CF, Moreira JC, Ferreira JA, et al. Avaliação de impactos do efluente do tratamento combinado de lixiviado de aterro de resíduos sólidos urbanos e esgoto doméstico sobre a biota aquática. Ciênc Saúde Coletiva. 2013;18:3235–3243. doi: 10.1590/S1413-81232013001100014
  • Pivato A, Gaspari L. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria. Waste Manag. 2006;26:1148–1155. doi: 10.1016/j.wasman.2005.10.008
  • Cassano D, Zapata A, Brunetti G, et al. Comparison of several combined/integrated biological-AOPs setups for the treatment of municipal landfill leachate: minimization of operating costs and effluent toxicity. Chem Eng J. 2011;172:250–257. doi: 10.1016/j.cej.2011.05.098
  • Emenike CU, Fauziah SH, Agamuthu P. Characterization and toxicological evaluation of leachate from closed sanitary landfill. Waste Manag Res. 2012;30:888–897. doi: 10.1177/0734242X12443585
  • Junior ABd C, Dalsasso RL, Rohers F. Pré-tratamento de lixiviados de aterros sanitários por filtração direta ascendente e coluna de carvão ativado. Eng Sanit Ambient. 2010;15:385–392. doi: 10.1590/S1413-41522010000400011
  • Guieysse B, Norvill ZN. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment. J Hazard Mater. 2014;267:142–152. doi: 10.1016/j.jhazmat.2013.12.016
  • Oller I, Malato S, Sánchez-Pérez JA. Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Sci Total Environ. 2011;409:4141–4166. doi: 10.1016/j.scitotenv.2010.08.061
  • Kurniawan TA, Lo WH, Chan GY. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate. J Hazard Mater. 2006;129:80–100. doi: 10.1016/j.jhazmat.2005.08.010
  • Renou S, Givaudan JG, Poulain S, et al. Landfill leachate treatment: review and opportunity. J Hazard Mater. 2008;150:468–493. doi: 10.1016/j.jhazmat.2007.09.077
  • Baxendale JH, Wilson JA. The photolysis of hydrogen peroxide at high light intensities. Trans Faraday Soc. 1957;53:344–356. doi: 10.1039/tf9575300344
  • Vianna VB, Tôrres AR, Azevedo EB. Degradação de corantes ácidos por processos oxidativos avançados usando um reator com disco rotatório de baixa velocidade. Quím Nova. 2008;31:1353–1358. doi: 10.1590/S0100-40422008000600015
  • Parsons S, Williams M. Introduction. In: Parsons S, editor. Advanced oxidation processes for water and wastewater treatment. London: IWA Publishing; 2004. p. 1–6.
  • Brito NN, Paterniani JES, Brota GA, et al. Ammonia removal from leachate by photochemical process using H2O2. Ambi-Agua. 2010;5:51–60. doi: 10.4136/ambi-agua.136
  • Chen YC, Smirniotis P. Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound. Ind Eng Chem Res. 2002;41:5958–5965. doi: 10.1021/ie020415o
  • An T, Gu H, Xiong Y, et al. Decolourization and COD removal from reactive dye-containing wastewater using sonophotocatalytic technology. J Chem Technol Biotechnol. 2003;78:1142–1148. doi: 10.1002/jctb.915
  • Mahamuni NN, Adewuyi YG. Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem. 2010;17:990–1003. doi: 10.1016/j.ultsonch.2009.09.005
  • Bauer R, Fallmann H. The photo-Fenton oxidation – a cheap and efficient wastewater treatment method. Res Chem Intermed. 1997;23:341–354. doi: 10.1163/156856797X00565
  • Chong MN, Sharma AK, Burn S, et al. Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment. J Cleaner Prod. 2012;35:230–238. doi: 10.1016/j.jclepro.2012.06.003
  • Oloibiri V, Chys M, De Wandel S, et al. Removal of organic matter and ammonium from landfill leachate through different scenarios: operational cost evaluation in a full-scale case study of a Flemish landfill. J Environ Manage. 2017;203:774–781. doi: 10.1016/j.jenvman.2016.09.055
  • de Morais JL, Zamora PP. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. J Hazard Mater. 2005;123:181–186. doi: 10.1016/j.jhazmat.2005.03.041
  • Primo O, Rivero MJ, Ortiz I. Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. J Hazard Mater. 2008;153:834–842. doi: 10.1016/j.jhazmat.2007.09.053
  • Kirmizakis P, Tsamoutsoglou C, Kayan B, et al. Subcritical water treatment of landfill leachate: application of response surface methodology. J Environ Manage. 2014;146:9–15. doi: 10.1016/j.jenvman.2014.04.037
  • Associação dos Municípios da Região da Foz do Rio Itajaí [AMFRI]. Plano municipal de gestão integrada de resíduos sólidos da associação dos municípios da região da foz do rio itajaí. Itajaí: Associação dos Municípios da Região da Foz do Rio Itajaí. 2011.
  • American Public Health Association [APHA]. Standard methods for the examination of water & wastewater. Washington (DC): American Public Health Association; 2005.
  • Oliveira MC, Nogueira RFP, Gomes Neto JAG, et al. Sistema de injeção em fluxo espectrofotométrico para monitorar peróxido de hidrogênio em processo de fotodegradação por reação foto-fenton. Quím Nova. 2001;24:188–190. doi: 10.1590/S0100-40422001000200007
  • Kang YW, Cho MJ, Hwang KY. Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res. 1999;33:1247–1251. doi: 10.1016/S0043-1354(98)00315-7
  • United States Environmental Protection Agency. Test methods for evaluating solid waste. Washington (DC): U.S. Environmental Protection Agency Office of Solid Waste; 1986.
  • de Strelau JRM, de Castilhos AB, dos Madureira LAS. Extration of organic compounds in sanitary landfill leachate and determination by gas chromatography-mass spectrometry. Rev Ciênc Tecnol. 2009;16:19–30. doi: 10.15600/2238-1252/rct.v16n32p19-30
  • Nagel-Hassemer ME, Coral LA, Lapolli FR, et al. Processo UV/H2O2 Como pós-tratamento para remoção de cor e polimento final em efluentes têxteis. Quím Nova. 2012;35:900–904. doi: 10.1590/S0100-40422012000500007
  • Córdova RN. Cartagena, Colombia. Proceedings of the Anais Do 59° Congreso Internacional del Agua, Saneamiento, Ambiente y Energías Renovables, Y el XXXV Congreso Interamericano de Ingeniería Sanitaria y Ambiental de AIDIS; 2016 Aug 21–24; 2016.
  • FIGAWA – Associação Federal das Empresas do Setor de Gás e Água da Alemanha. Grupo de trabalho oxidação por via úmida. Comunicado Técnico n. 19; Köln: Figawa; 1997.
  • Tuhkanen TA. UV/h2o2. In: Parsons S, editor. Advanced oxidation processes for water and wastewater treatment. London: IWA Publishing; 2004. p. 86–110.
  • Vogel AI. Análise química quantitativa / Vogel. [Quantitative chemical analysis]. Afonso JC, Fernandes De Aguiar P, Bicca De Alencastro R, translators. Rio de Janeiro: LTC; 2008.
  • Chang R. Físico-química: para as ciências químicas e biológicas [Physical chemistry: for the chemical and biological sciences]. 3rd ed Porto Alegre: AMGH; 2010.
  • Tchobanoglous G, Theisen H, Vigil SA. Integrated solid waste management, engineering principles and management issues. New York (NY): McGraw-Hill; 1993.
  • Ehrig HJ. Leachate quality. In: Christensen TH, Cossu R, Stegmann R, editors. Sanitary landfilling: process, technology and environmental impact. London: Academic Press; 1989.
  • Palmisano AC, Barlaz MA. Microbiology of solid waste. Boca Raton (FL): CRC Press; 1996.
  • Al Seadi T, Owen N, Hellström H, et al. Source separation of MSW: an overview of the source separation and separate collection of the digestible fraction of household waste, and other similar wastes from municipalities, aimed to be used as feedstock for anaerobic digestion in biogas plants. IEA Bioenergy Task 37 Energy from Biogas Report; 2013.
  • Campuzano R, González-Martínez S. Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag. 2016;54:3–12. doi: 10.1016/j.wasman.2016.05.016
  • Union E. Directive 2008/98/EC of the European Parliament and of the council, of 19 November 2008, on waste and repealing certain directives. Off J Eur Union. 2008;L 312: 3–30.
  • Ormad MP, Mosteo R, Ibarz C, et al. Multivariate approach to the photo-Fenton process applied to the degradation of winery wastewaters. Appl Catal B Environ. 2006;66:58–63. doi: 10.1016/j.apcatb.2006.02.014
  • Montgomery DC. Design and analysis of experiments. 4th ed. New York: John Wiley & Sons; 1996.
  • Calado V, Montgomery DC. Planejamento de experimentos usando o statistica [Planning of experiments using statistica]. Rio de Janeiro: E-Papers; 2003.
  • Emerson K, Russo RC, Lund RE, et al. Aqueous ammonia equilibrium calculations: effect of pH and temperature. J Fish Res Bd Can. 1975;32:2379–2383. doi: 10.1139/f75-274
  • Sawyer CN, McCarty PL, Parkin GF. Chemistry for environmental engineering. New York (NY): McGraw-Hill; 1994.
  • Weeks JL, Rabani J. The pulse radiolysis of deaerated carbonate solutions. I. Transient optical spectrum and mechanism. II. pK for OH radicals 1. J Phys Chem. 1966;70:2100–2106. doi: 10.1021/j100879a005
  • Baynes J, Dominiczak MH. Bioquímica médica. Rio de Janeiro: Elsevier Brasil; 2015.
  • Barros M, Nozaki J. Redução de poluentes de efluentes das indústrias de papel e celulose pela floculação/coagulação e degradação fotoquímica. Quím Nova. 2002;25:736–740. doi: 10.1590/S0100-40422002000500006
  • Schulte P, Bayer A, Kuhn F, et al. H2O2/O3, H2O2/UV and H2O2/Fe2+ processes for the oxidation of hazardous wastes. Ozone Sci Eng. 1995;17:119–134. doi: 10.1080/01919519508547541
  • Steensen M. Chemical oxidation for the treatment of leachate – process comparison and results from full-scale plants. Water Sci Technol. 1997;35:249–256. doi: 10.2166/wst.1997.0130
  • Ince NH. Light-enhanced chemical oxidation for tertiary treatment of municipal landfill leachate. Water Environ Res. 1998;70:1161–1169. doi: 10.2175/106143098X123282
  • Qureshi TI, Kim HT, Kim YJ. UV-catalytic treatment of municipal solid-waste landfill leachate with hydrogen peroxide and ozone oxidation. Chin J Chem Eng. 2002;10:444–449.
  • Stevenson FJ. Humus chemistry: genesis, composition, reactions. New York (NY): John Wiley & Sons; 1994.
  • Suffet IH, MacCarthy P. Introduction. In: Suffet IH, MacCarthy P, American Chemical Society, editors. Aquatic humic substances: influence on fate and treatment of pollutants. Washington (DC): American Chemical Society; 1989. p. 17–30.
  • Wershaw RL. The study of humic substances-in search of a paradigm. In: Davies G, Ghabbour EA, Royal Society of Chemistry, editors. Humic substances: versatile components of plants, soil and water. Cambridge: Royal Society of Chemistry; 2000. p. 1–7.
  • Moravia WG. Avaliação do tratamento de lixiviado de aterro sanitário através de processo oxidativo avançado conjugado com sistema de separação por membranas. [Dissertation]. Belo Horizonte: Universidade Federal de Minas Gerais; 2010.
  • Bolton JR, Cater SR. Homogeneous photodegradation of pollutants in contaminated water. In: Helz GR, editor. Surface and aquatic environmental photochemistry. Boca Raton: CRC Press; 1994. p. 467–490.
  • Crittenden JC, Harza MW, Trussell RR, et al. Water treatment: principles and design. Cambridge: John Wiley & Sons; 2012.
  • Bolton JR. Ultraviolet applications handbook. Ayr: Bolton Photosciences Inc; 1999.
  • Schnitzer M. Chapter 1 humic substances: chemistry and reactions. Dev Soil Sci. 1978;8:1–64.
  • Abbt-Braun G, Lankes U, Frimmel FH. Structural characterization of aquatic humic substances – the need for a multiple method approach. Aquatic Sci Res Across Bound. 2004;66:151–170. doi: 10.1007/s00027-004-0711-z
  • Dick DP. Química da matéria orgânica do solo. In: de Melo VF, Alleoni LRF, editors. Química e mineralogia do solo – parte 2 – aplicações. Viçosa: SBCS; 2009. p. 2–67.
  • Brady NC, Weil RR. Elementos da natureza e propriedades dos solos. Porto Alegre: Bookman; 2013.
  • Pagsberg PB. Abstracts, 17th Annual Meeting of the Radiation. Cincinnati: Research Society; 1969; and Report 1972, Riso-256, 209.
  • Hayon E, Simic M. Intermediates produced from the one-electron oxidation of hydrazine. Acid-base properties of the amino, hydroxyamino, and methoxyamino radicals. J Am Chem Soc. 1971;93:5982–5986. doi: 10.1021/ja00752a005
  • Huang L, Li L, Dong W, et al. Removal of ammonia by OH radical in aqueous phase. Environ Sci Technol. 2008;42:8070–8075. doi: 10.1021/es8008216
  • Deng Y, Zhao R. Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Rep. 2015;1:167–176. doi: 10.1007/s40726-015-0015-z
  • Wang J, Song M, Chen B, et al. Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254 nm irradiation: implications to nitrogen removal and analysis. Chemosphere. 2017;184:1003–1011. doi: 10.1016/j.chemosphere.2017.06.078
  • Hoigne J, Bader H. Ozonation of water: kinetics of oxidation of ammonia by ozone and hydroxyl radicals. Environ Sci Technol. 1978;12:79–84. doi: 10.1021/es60137a005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.