382
Views
6
CrossRef citations to date
0
Altmetric
Articles

Storing of exoelectrogenic anolyte for efficient microbial fuel cell recovery

, &
Pages 1467-1475 | Received 11 Aug 2017, Accepted 27 Dec 2017, Published online: 17 Jan 2018

References

  • Butti S, Velvizhi G, Sulonen M, et al. Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sustain Energ Rev. 2016;53:462–476.
  • Feng Y, Wang X, Logan B, et al. Brewery wastewater treatment using air-cathode microbial fuel cells. Appl Microbiol Biot. 2008;78(5):873–880.
  • Abbasi U, Jin W, Pervez A, et al. Anaerobic microbial fuel cell treating combined industrial wastewater: correlation of electricity generation with pollutants. Bioresour Technol. 2016;200:1–7.
  • Venkata Mohan S, Velvizhi M, Babu L, et al. Bio-catalyzed electrochemical treatment of real field dairy wastewater with simultaneous power generation. Biochem Eng J. 2010;51(1–2):32–39.
  • Patil S, Surakasi V, Koul S, et al. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol. 2009;100(21):5132–5139.
  • Kaewkannetra P, Chiwes W, Chiu T. Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel. 2011;90(8):2746–2750.
  • Pannell T, Goud R, Schell D, et al. Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater. Biochem Eng J. 2016;116:85–94.
  • Velvizhi G, Venkata Mohan S. Electrogenic activity and electron losses under increasing organic load of recalcitrant pharmaceutical wastewater. Int J Hydrogen Energ. 2012;37(7):5969–5978.
  • Fernando E, Keshavarz T, Kyazze G, et al. Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system. Environ Technol. 2016;37(2):255–264.
  • Huang L, Chen S, Rezaei F, et al. Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells. Environ Technol. 2009;30(5):499–504.
  • Simate G, Cluett J, Iyuke S, et al. The treatment of brewery wastewater for reuse: state of the art. Desalination. 2011;273(2–3):235–247.
  • Ashrafi O, Yerushalmi L, Haghighat F. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. J Environ Manage. 2015;158:146–157.
  • Lindberg L, Willför S, Holmbom B. Antibacterial effects of knotwood extractives on paper mill bacteria. J Ind Microbiol Biotechnol. 2004;31(3):137–147.
  • Jadhav G, Ghangrekar M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol. 2009;100(2):717–723.
  • Liu G, Yates M, Cheng S, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments. Bioresour Technol. 2011;102(15):7301–7306.
  • Vogl A, Bischof F, Wichern M. Surface-to-surface biofilm transfer: a quick and reliable startup strategy for mixed culture microbial fuel cells. Water Sci Technol. 2016;73(8):1769–1776.
  • Kim J, Min B, Logan B. Evaluation of procedures to acclimate a microbial fuel cell for electricity generation. Appl Microbiol Biotechnol. 2005;68(1):23–30.
  • Baudler A, Riedl S, Schröder U. Long-term performance of primary and secondary electroactive biofilms using layered corrugated carbon electrodes. Front Energy Res. 2014;2, Article number 30.
  • Prakash O, Nimonkar Y, Shouche Y. Practice and prospects of microbial preservation. FEMS Microbiol Lett. 2013;339(1):1–9.
  • Jiang X, Hu J, Petersen E, et al. Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1. Nat Commun. 2013;4, Article number: 2751.
  • Alam S, Persson F, Wilén B-M, et al. Effects of storage on mixed-culture biological electrodes. Sci Rep. 2015;5, Article number: 18433.
  • Bjerketorp J, Håkansson S, Belkin S, et al. Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Biotechnol. 2006;17(1):43–49.
  • Lv Y, Wan C, Liu X, et al. Drying and re-cultivation of aerobic granules. Bioresour Technol. 2013;129:700–703.
  • Liu H. Microbial fuel cell: novel anaerobic generation from wastewater. In: Khanal S, editor. Anaerobic biotechnology for bioenergy production: principles and applications. USA: Blackwell Publishing; 2008. p. 221–246.
  • Yükselen M. Preservation characteristics of UASB sludges. J Environ Sci Health. Part A. 1997;32:2069–2076.
  • Li J, Zicari S, Cui Z, et al. Processing anaerobic sludge for extended storage as anaerobic digester inoculum. Bioresour Technol. 2014;166:201–210.
  • Adav S, Lee D-J, Tay J. Activity and structure of stored aerobic granules. Environ Technol. 2007;28(11):1227–1235.
  • Xu, H-C, He, P-J, Wang, G-Z, et al. Enhanced storage stability of aerobic granules seeded with pellets. Bioresour Technol. 2010;101(21):8031–8037.
  • Balfour-Cunningham A, Boxall N, Banning N, et al. Preservation of salt-tolerant acidophiles used for chalcopyrite bioleaching: assessment of cryopreservation, liquid-drying and cold storage. Miner Eng. 2017;106:91–96.
  • Haavisto J, Kokko M, Lay C-H, et al. Effect of hydraulic retention time on continuous electricity production from xylose in up-flow microbial fuel cell. Int J Hydrogen Energ. 2017;42(45):27494–27501. https://doi.org/10.1016/j.ijhydene.2017.05.068.
  • Willför S, Sundberg A, Pranovich A, et al. Polysaccharides in some industrially important hardwood species. Wood Sci Technol. 2005;39(8):601–617.
  • Cetinkaya A, Ozdemir O, Demir A, et al. Electricity production and characterization of high-strength industrial wastewaters in microbial fuel cell. Appl Biochem Biotechnol. 2017;182(2):468–481.
  • Mäkinen AE, Nissilä ME, Puhakka JA. Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. Int J Hydrogen Energ. 2012;37(17):12234–12240.
  • Logan B, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40(17):5181–5192.
  • Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356.
  • Muyzer G, de Waal EC, Uitterlinden AG. Profiling complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microb. 1993;59(3):695–700.
  • Muyzer G, Hottenträger S, Teske A, et al. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA – a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: Akkermans ADL, van Elsas JD, de Bruijn F, editors. Molecular microbial ecology manual. Dordrecht: Kluwer; 1996. p. 1–23.
  • Koskinen PEP, Kaksonen AH, Puhakka JA. The relationship between the instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor. Biotechnol Bioeng. 2007;97(4):742–758.
  • Lakaniemi A-M, Hulatt CJ, Thomas DN, et al. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol Biofuels. 2011;4(34):1–12.
  • Palmroth MRT, Langwaldt JH, Aunola TA, et al. Effect of modified Fenton’s reaction on microbial activity and removal of PAHs in creosote oil contaminated soil. Biodegradation. 2006;17(2):29–39.
  • Pinto R, Srinivasan B, Manuel M, et al. A two-population bio-electrochemical model of a microbial fuel cell. Bioresour Technol. 2010;101(14):5256–5265.
  • Shi L, Günther S, Hübschmann T, et al. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A. 2007;71A(8):592–598.
  • Logan B, Regan J. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14(12):512–518.
  • Huang L, Zeng R, Angelidaki I. Electricity production from xylose using a mediator-less microbial fuel cell. Bioresour Technol. 2008;99(10):4178–4184.
  • Sun G, Thygesen A, Meyer A. Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization. Appl Microbiol Biotechnol. 2015;99(11):4905–4915.
  • Huang L, Angelidaki I. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnol Bioeng. 2008;100(3):413–422.
  • Kokko M, Mäkinen A, Sulonen M, et al. Effects of anode potentials on bioelectrogenic conversion of xylose and microbial community compositions. Biochem Eng J. 2015;101:248–252.
  • Huang L, Logan B. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Appl Microbiol Biotechnol. 2008;80(4):655–664.
  • Boghani H, Kim J, Dinsdale R, et al. Reducing the burden of food processing washdown wastewaters using microbial fuel cells. Biochem Eng J. 2017;117:210–217.
  • Bond D, Lovley D. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol. 2003;69(3):1548–1555.
  • Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Anton Leeuw. 1998;73(1):127–141.
  • Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol. 1999;2(3):317–322.
  • Zhou L, Deng D, Zhang Y, et al. Isolation of a facultative anaerobic exoelectrogenic strain LZ-1 and probing electron transfer mechanism in situ by linking UV/Vis spectroscopy and electrochemistry. Biosens Bioelectron. 2017;90:264–268.
  • Zhang T, Cui C, Chen S, et al. A novel mediatorless microbial fuel cell based on direct catalysis of escherichia coli. Chem Commun. 2006;137:2257–2259.
  • Wang Q, Xie N, Qin Y, et al. Tumebacillus flagellatus sp. nov., an a-amylase/pullulanase-producing bacterium isolated from cassava wastewater. Int J Syst Evol Micr. 2013;63:3138–3142.
  • Hasona A, Kim Y, Healy F, et al. Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J Bacteriol. 2004;186(22):7593–7600.
  • Zeppilli M, Villano M, Aulenta F, et al. Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell. Environ Sci Pollut Res Int. 2015;22(10):7349–7360.
  • Barbirato F, Grivet J, Soucaille P, et al. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl and Environ Microbiol. 1996;62(4):1448–1451.
  • Sun L, Toyonaga M, Ohashi A, et al. Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. Int J Syst Evol Microbiol. 2016;66:2635–2642.
  • Chan K-G, Tee K, Yin W-F, et al. Complete genome sequence of Pluralibacter gergoviae FB2, an N-acyl homoserine lactone-degrading strain isolated from packed fish paste. Genome Announc. 2014;2(6):1–2.
  • Teather R. Maintenance of laboratory strains of obligately anaerobic rumen bacteria. Appl Environ Microbiol. 1982;44(2):499–501.
  • Heylen K, Hoefman S, Vekeman B, et al. Safeguarding bacterial resources promotes biotechnological innovation. Appl Microbiol Biotechnol. 2012;94(3):565–574.
  • Mazur P. Freezing of living cells: mechanisms and implications. Am J Physiol. 1984;247:C125–C142.
  • Smith D, Ryan M. The impact of OECD best practice on the validation of cryopreservation techniques for microorganisms. CryoLetters. 2008;29(1):63–72.
  • Morgan C, Herman N, White P, et al. Preservation of micro-organisms by drying; A review. J Microbiol Methods. 2006;66(2):183–193.
  • Nimje V, Chen C-Y, Chen C-Y, et al. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell. J Power Sources. 2009;190(2):258–263.
  • McKenney P, Driks A, Eichenberg P. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol. 2013;11(1):33–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.