518
Views
7
CrossRef citations to date
0
Altmetric
Articles

Photocatalytic degradation of H2S in the gas-phase using a continuous flow reactor coated with TiO2-based acrylic paint

, , , , &
Pages 2276-2289 | Received 29 Aug 2017, Accepted 07 Feb 2018, Published online: 26 Feb 2018

References

  • Canela MC, Alberici RM, Jardim WF. Gas-phase destruction of H2S using TiO2/UV-VIS. J Photochem Photobiol A. 1998;112:73–80. doi: 10.1016/S1010-6030(97)00261-X
  • Kataoka S, Lee E, Tejedor-Tejedor MI, et al. Photocatalytic degradation of hydrogen sulfide and in situ FT-IR analysis of reaction products on surface of TiO2. Appl Catal B-Environ. 2005;61:159–163. doi: 10.1016/j.apcatb.2005.04.018
  • Defoer N, Bo ID, Langenhove HV, et al. Gas chromatography–mass spectrometry as a tool for estimating odour concentrations of biofilter effluents at aerobic composting and rendering plants. J Chromatogr A. 2002;970:259–273. doi: 10.1016/S0021-9673(02)00654-4
  • Anet B, Lemasle M, Couriol C, et al. Characterization of gaseous odorous emissions from a rendering plant by GC/MS and treatment by biofiltration. J Environ Manage. 2013;128:981–987. doi: 10.1016/j.jenvman.2013.06.028
  • Rappert S, Muller R. Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manage. 2005;25:887–907. doi: 10.1016/j.wasman.2005.07.008
  • Portela R, Suárez S, Rasmussen SB, et al. Photocatalytic-based strategies for H2S elimination. Catal Today. 2010;151:64–70. doi: 10.1016/j.cattod.2010.03.056
  • Tsang YF, Chua H, Sin SN, et al. Treatment of odorous volatile fatty acids using a biotrickling filter. Bioresour. Technol. 2008;99:589–595. doi: 10.1016/j.biortech.2006.12.032
  • Ramírez M, Fernández M, Granada C, et al. Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria. Bioresour. Technol. 2011;102:4047–4053. doi: 10.1016/j.biortech.2010.12.018
  • Luo J, Lindsey S. The use of pine bark and natural zeolite as biofilter media to remove animal rendering process odours. Bioresour Technol. 2006;97:1461–1469. doi: 10.1016/j.biortech.2005.07.011
  • Sheridan BA, Curran TP, Dodd VA. Biofiltration of n-butyric acid for the control of odour. Bioresour Technol. 2003;89:199–205. doi: 10.1016/S0960-8524(03)00045-2
  • Ma Y, Chen Z, Gong H. Study on selective hydrogen sulfide removal over carbon dioxide by catalytic oxidative absorption method with chelated iron as the catalyst. Renew Energ. 2016;96:1119–1126. doi: 10.1016/j.renene.2016.04.038
  • Pope D, Davis BJ, Moss RL. Multi-stage absorption of rendering plant odours using sodium hypochlorite and other reagents. Atmos Environ. 1980;15:251–262. doi: 10.1016/0004-6981(81)90025-1
  • Grandclerc A, Guéguen-Minerbe M, Nour I, et al. Impact of cement composition on the adsorption of hydrogen sulphide and its subsequent oxidation onto cementitious material surfaces. Constr Build Mater. 2017;152:576–586. doi: 10.1016/j.conbuildmat.2017.07.003
  • Mochizuki T, Kubota M, Matsuda H, et al. Adsorption behaviors of ammonia and hydrogen sulfide on activated carbon prepared from petroleum coke by KOH chemical activation. Fuel Process Technol. 2016;144:164–169. doi: 10.1016/j.fuproc.2015.12.012
  • Boraphech P, Thiravetyan P. Trimethylamine (fishy odor) adsorption by biomaterials: effect of fatty acids, alkanes, and aromatic compounds in waxes. J Hazard Mater. 2015;284:269–277. doi: 10.1016/j.jhazmat.2014.11.014
  • Kato S, Hirano Y, Iwata M, et al. Photocatalytic degradation of gaseous sulfur compounds by silver-deposited titanium dioxide. Appl Catal B-Environ. 2005;57:109–115. doi: 10.1016/j.apcatb.2004.10.015
  • Yu Y, Zhang T, Zheng L, et al. Photocatalytic degradation of hydrogen sulfide using TiO2 film under microwave electrodeless discharge lamp irradiation. Chem Eng J. 2013;225:9–15. doi: 10.1016/j.cej.2013.03.032
  • Li X, Zhang G, Pan H. Experimental study on ozone photolytic and photocatalytic degradation of H2S using continuous flow mode. J Hazard Mater. 2012;199–200:255–261. doi: 10.1016/j.jhazmat.2011.11.006
  • Chen J, Poon C. Photocatalytic construction and building materials: from fundamentals to applications. Build Environ. 2009;44:1899–1906. doi: 10.1016/j.buildenv.2009.01.002
  • Boyjoo Y, Sun H, Liu J, et al. A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem Eng J. 2017;310:537–559. doi: 10.1016/j.cej.2016.06.090
  • Fu X, Zeltner WA, Anderson MA. Applications in photocatalytic purification of air. Stud Surf Sci Catal. 1996;103:445–461. doi: 10.1016/S0167-2991(97)81114-7
  • Guillard C, Baldassare D, Duchamp C, et al. Photocatalytic degradation and mineralization of a malodorous compound (dimethyldisulfide) using a continuous flow reactor. Catal Today. 2007;122:160–167. doi: 10.1016/j.cattod.2007.01.059
  • Rochetto UL, Tomaz E. Degradation of volatile organic compounds in the gas phase by heterogeneous photocatalysis with titanium dioxide/ultraviolet light. J Air Waste Manage Assoc. 2015;65:810–817. doi: 10.1080/10962247.2015.1020117
  • Brancher M, Franco D, Lisboa HM. Photocatalytic oxidation of H2S in the gas phase over TiO2-coated glass fiber filter. Environ Technol. 2016;37:2852–2864. doi: 10.1080/09593330.2016.1167250
  • Kako T, Nakajima A, Watanabe T, et al. Comparison of photocatalytic properties of a batch reactor with those of a flow reactor in a nearly controlled mass transport region. Res Chem Intermed. 2005;31:371–378. doi: 10.1163/1568567053956572
  • Sopyan I. Kinetic analysis on photocatalytic degradation of gaseous acetaldehyde, ammonia and hydrogen sulfide on nanosized porous TiO2 films. Sci Technol Adv Mater. 2007;8:33–39. doi: 10.1016/j.stam.2006.10.004
  • Alonso-Tellez A, Robert D, Keller N, et al. A parametric study of the UV-A photocatalytic oxidation of H2S over TiO2. Appl Catal, B. 2012;115-116:209–221. doi: 10.1016/j.apcatb.2011.12.014
  • Langenhove HV, Demeestere K, Dewulf J, et al. Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: parameter study and reaction pathways. Appl Catal B-Environ. 2005;60:93–106. doi: 10.1016/j.apcatb.2005.02.023
  • Cantau C, Larribau S, Pigot T, et al. Oxidation of nauseous sulfur compounds by photocatalysis or photosensitization. Catal Today. 2007;122:27–38. doi: 10.1016/j.cattod.2007.01.038
  • Nishikawa H, Takahara Y. Adsorption and photocatalytic decomposition of odor compounds containing sulfur using TiO2/SiO2 bead. J Mol Catal A: Chem. 2001;172:247–251. doi: 10.1016/S1381-1169(01)00124-8
  • Einaga H, Tokura J, Teraoka Y, et al. Kinetic analysis of TiO2-catalyzed heterogeneous photocatalytic oxidation of ethylene using computational fluid dynamics. Chem Eng J. 2015;263:325–335. doi: 10.1016/j.cej.2014.11.017
  • Turki A, Guillard C, Dappozze F, et al. Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: kinetic study, adsorption isotherms and formal mechanisms. Appl Catal B-Environ. 2015;163:404–414. doi: 10.1016/j.apcatb.2014.08.010
  • Feltrin J, Sartor MN, De Noni Jr A, et al. Photocatalytic surfaces of titania on ceramic substrates. Part II: substrates, deposition and heat treating processes. Cerâmica. 2014;60:1–9. doi: 10.1590/S0366-69132014000100002
  • Feltrin J, Sartor MN, De Noni Jr A, et al. Photocatalytic surfaces of titania on ceramic substrates. Part I: synthesis, structure and photoactivity. Cerâmica. 2013;59:620–632. doi: 10.1590/S0366-69132013000400020
  • Saleiro GT, Cardoso SL, Toledo R, et al. Evaluation of crystalline phases of titanium dioxide supported on red ceramics. Cerâmica. 2010;56:162–167. doi: 10.1590/S0366-69132010000200011
  • Allen NS, Edge M, Verran J, et al. Photocatalytic titania based surfaces: environmental benefits. Polym Degrad Stab. 2008;93:1632–1646. doi: 10.1016/j.polymdegradstab.2008.04.015
  • Hochmannova L, Vytrasova J. Photocatalytic and antimicrobial effects of interior paints. Prog Org Coat. 2010;67:1–5. doi: 10.1016/j.porgcoat.2009.09.016
  • Marolt T, Škapin AS, Bernard J, et al. Photocatalytic activity of anatase-containing facade coatings. Surf Coat Technol. 2011;206:1355–1361. doi: 10.1016/j.surfcoat.2011.08.053
  • Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air quality. Atmos Environ. 2008;42:4101–4112. doi: 10.1016/j.atmosenv.2008.01.031
  • Maggos T, Bartzis JG, Liakou M, et al. Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study. J Hazard Mater. 2007;146:668–673. doi: 10.1016/j.jhazmat.2007.04.079
  • Martinez T, Bertron A, Ringot E, et al. Degradation of NO using photocatalytic coatings applied to different substrates. Build Environ. 2011;46:1808–1816. doi: 10.1016/j.buildenv.2011.03.001
  • Monteiro RAR, Lopes FVS, Silva AMT, et al. Are TiO2-based exterior paints useful catalysts for gas-phase photooxidation processes? A case study on n-decane abatement for air detoxification. Appl Catal B-Environ. 2014;147:988–999. doi: 10.1016/j.apcatb.2013.09.031
  • Ângelo J, Andrade L, Mendes A. Highly active photocatalytic paint for NOx abatement under real-outdoor conditions. Appl Catal A-Gen. 2014;484:17–25. doi: 10.1016/j.apcata.2014.07.005
  • Águia C, Ângelo J, Madeira LM, et al. Influence of photocatalytic paint components on the photoactivity of P25 towards NO abatement. Catal Today. 2010;151:77–83. doi: 10.1016/j.cattod.2010.01.057
  • Costa A, Chiarello GL, Selli E, et al. Effects of TiO2 based photocatalytic paint on concentrations and emissions of pollutants and on animal performance in a swine weaning unit. J Environ Manage. 2012;96:86–90. doi: 10.1016/j.jenvman.2011.08.025
  • Ballari MM, Hunger M, Hüsken G, et al. NOx photocatalytic degradation employing concrete pavement containing titanium dioxide. Appl Catal B-Environ. 2010;95:245–254. doi: 10.1016/j.apcatb.2010.01.002
  • Wu Y, Krishnan P, Yu LE, et al. Using lightweight cement composite and photocatalytic coating to reduce cooling energy consumption of buildings. Constr Build Mater. 2017;145:555–564. doi: 10.1016/j.conbuildmat.2017.04.059
  • Silva AL, Muche DNF, Dey S, et al. Photocatalytic Nb2O5-doped TiO2 nanoparticles for glazed ceramic tiles. Ceram Int. 2016;42:5113–5122. doi: 10.1016/j.ceramint.2015.12.029
  • Nogueira MV. Photocatalysts based on titanium dioxide modified with niobium to reduce carbon dioxide to methanol [master’s thesis]. Araraquara: Paulista State University; 2014.
  • Lan Y, Lu Y, Ren Z. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy. 2013;2:1031–1045. doi: 10.1016/j.nanoen.2013.04.002
  • Borges SS, Xavier LPS, Silva AC, et al. Immobilized titanium dioxide (TiO2) in different support materials to use in heterogeneous photocatalysis. Química Nova. 2016;39:836–844.
  • Sousa VM, Manaia CM, Mendes A, et al. Photoinactivation of various antibiotic resistant strains of Escherichia coli using a paint coat. J Photochem Photobiol A. 2013;251:148–153. doi: 10.1016/j.jphotochem.2012.10.027
  • Wan G, Wang S, Li L, et al. Photocarrier dynamic measurement of rutile TiO2 films prepared by RF magnetron reactive sputtering. J Alloys Compd. 2017;701:549–553. doi: 10.1016/j.jallcom.2017.01.146
  • Ziarati A, Badiei A, Ziarani GM, et al. Simultaneous photocatalytic and catalytic activity of p–n junction NiO@anatase/rutile-TiO2 as a noble-metal free reusable nanoparticle for synthesis of organic compounds. Catal Commun. 2017;95:77–82. doi: 10.1016/j.catcom.2017.02.023
  • Allen NS, Edge M, Ortega A, et al. Degradation and stabilisation of polymers and coatings: nano versus pigmentary titania particles. Polym Degrad Stab. 2004;85:927–946. doi: 10.1016/j.polymdegradstab.2003.09.024
  • Fujishima A, Zhang X. Titanium dioxide photocatalysis: present situation and future approaches. C R Chim. 2006;9:750–760. doi: 10.1016/j.crci.2005.02.055
  • Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol C. 2000;1:1–21. doi: 10.1016/S1389-5567(00)00002-2
  • Ochiai T, Fujishima A. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J Photochem Photobiol C. 2012;13:247–262. doi: 10.1016/j.jphotochemrev.2012.07.001
  • Fujishima A, Zhang X, Tryk DA. Tio2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63:515–582. doi: 10.1016/j.surfrep.2008.10.001
  • Tryba B, Homa P, Wróbel RJ, et al. Photocatalytic decomposition of benzo-[a]-pyrene on the surface of acrylic, latex and mineral paints. Influence of paint composition. J Photochem Photobiol A. 2014;286:10–15. doi: 10.1016/j.jphotochem.2014.04.012
  • Noda LK, Almeida RM, Probst LFD, et al. Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J Mol Catal A: Chem. 2005;225:39–46. doi: 10.1016/j.molcata.2004.08.025
  • Noda LK, Almeida RM, Gonçalves NS, et al. Tio2 with a high sulfate content—thermogravimetric analysis, determination of acid sites by infrared spectroscopy and catalytic activity. Catal Today. 2003;85:69–74. doi: 10.1016/S0920-5861(03)00195-0
  • Huang L, Xia L, Ge X, et al. Removal of H2S from gas stream using combined plasma photolysis technique at atmospheric pressure. Chemosphere. 2012;88:229–234. doi: 10.1016/j.chemosphere.2012.02.075
  • Barnes AJ, Hallam HE, Howells JDR. Photolysis of hydrogen sulphide in low-temperature matrices. J Mol Struct. 1974;23:463–467. doi: 10.1016/0022-2860(74)87014-6
  • Doucet N, Bocquillon F, Zahraa O, et al. Kinetics of photocatalytic VOCs abatement in a standardized reactor. Chemosphere. 2006;65:1188–1196. doi: 10.1016/j.chemosphere.2006.03.061
  • Asenjo NG, Santamaría R, Blanco C, et al. Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon N Y. 2013;55:62–69. doi: 10.1016/j.carbon.2012.12.010
  • Jo W. Coupling of titania with multiwall carbon nanotubes for decomposition of gas-phase pollutants under simulated indoor conditions. J Air Waste Manage. 2013;63:963–970. doi: 10.1080/10962247.2013.801931
  • Yu QL, Brouwers HJH. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: experimental study. Appl Catal B-Environ. 2009;92:454–461. doi: 10.1016/j.apcatb.2009.09.004
  • Shayegan Z, Lee C-S, Haghighat F. Tio2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chem Eng J. 2017. doi: 10.1016/j.cej.2017.09.153
  • Alberici RM, Jardim WF. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal B-Environ. 1997;14:55–68. doi: 10.1016/S0926-3373(97)00012-X
  • Verbruggen SW, Lenaerts S, Denys S. Analytic versus CFD approach for kinetic modeling of gas phase photocatalysis. Chem Eng J. 2015;262:1–8. doi: 10.1016/j.cej.2014.09.041
  • Zhang Y, Yang R, Zhao R. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmos Environ. 2003;37:3395–3399. doi: 10.1016/S1352-2310(03)00357-1
  • Obee TN, Brown RT. Tio2 photocatalysis for indoor air applications: effects of humidity and trace concentration levels on the oxidation rates of formaldehyde, toluene and 1,3-butadiene. Environ Sci Technol. 1995;29:1223–1231. doi: 10.1021/es00005a013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.