1,163
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil

, , , , &
Pages 2345-2353 | Received 04 Sep 2017, Accepted 10 Feb 2018, Published online: 26 Feb 2018

References

  • Tang X, Shen C, Shi D, et al. Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China. J Hazard Mater. 2010;173:653–660. doi: 10.1016/j.jhazmat.2009.08.134
  • Thavamani P, Megharaj M, Naidu R. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium. Biodegradation. 2012;23:823–835. doi: 10.1007/s10532-012-9572-7
  • Chigbo C, Batty L. Phytoremediation for co-contaminated soils of chromium and benzo[a]pyrene using Zea mays L. Environ Sci Pollut R. 2014;21:3051–3059. doi: 10.1007/s11356-013-2254-0
  • Chigbo C, Batty L. Phytoremediation potential of Brassica juncea in Cu-pyrene co-contaminated soil: comparing freshly spiked soil with aged soil. J Environ Manage. 2013;129:18–24. doi: 10.1016/j.jenvman.2013.05.041
  • Song H, Liu Y, Xu W, et al. Simultaneous Cr (VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Bioresour Technol. 2009;100:5079–5084. doi: 10.1016/j.biortech.2009.05.060
  • Sprocati A, Alisi C, Tasso F, et al. Effectiveness of a microbial formula, as a bioaugmentation agent, tailored for bioremediation of diesel oil and heavy metal co-contaminated soil. Process Biochem. 2012;47:1649–1655. doi: 10.1016/j.procbio.2011.10.001
  • Ibarrolaza A, Coppotelli B, Del Panno M, et al. Dynamics of microbial community during bioremediation of phenanthrene and chromium(VI)-contaminated soil microcosms. Biodegradation. 2009;20(1):95–107. doi: 10.1007/s10532-008-9203-5
  • Deeb B, Altalhi A. Degradative plasmid and heavy metal resistance plasmid naturally coexist in phenol and cyanide assimilating bacteria. Am J Biochem Biotechnol. 2009;5:84–93. doi: 10.3844/ajbbsp.2009.84.93
  • Bhattacharya A, Gupta A, Kaur A, et al. Efficacy of acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Appl Microbiol Biot. 2014;98:9829–9841. doi: 10.1007/s00253-014-5910-5
  • Chandra S, Sharma R, Singh K, et al. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol. 2013;63:417–431. doi: 10.1007/s13213-012-0543-3
  • Yu X, Wu S, Wu F, et al. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J Hazard Mater. 2011;186:1206–1217. doi: 10.1016/j.jhazmat.2010.11.116
  • Wang Z, Xu Y, Wang H, et al. Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms. Pedosphere. 2012;22:717–725. doi: 10.1016/S1002-0160(12)60057-5
  • Ma T, Zhu L, Wang J, et al. Enhancement of atrazine degradation by crude and immobilized enzymes in two agricultural soils. Environ Earth Sci. 2011;64:861–867. doi: 10.1007/s12665-011-0910-6
  • Daâssi D, Rodríguez-Couto S, Nasri M, et al. Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int Biodeter Biodegr. 2014;90:71–78. doi: 10.1016/j.ibiod.2014.02.006
  • Dominguez A, Gomez J, Rodríguez-Solar D, et al. Enhanced production of laccase activity by Trametes versicolor immobilized into alginate beads by the addition of different inducers. J Biotechnol. 2007;131(2):S119–S120. doi: 10.1016/j.jbiotec.2007.07.209
  • Zhang K, Xu Y, Hua X, et al. An intensified degradation of phenanthrene with macroporous alginate–lignin beads immobilized Phanerochaete chrysosporium. Biochem Eng J. 2008;41:251–257. doi: 10.1016/j.bej.2008.05.003
  • Batool R, Qurrat-ul-ain K, Naeem A. Comparative study of Cr(VI) removal by exiguobacterium sp. in free and immobilized forms. Bioremediat J. 2014;18(4):317–327. doi: 10.1080/10889868.2014.938722
  • Chen B, Yuan M, Qian L. Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soil Sediment. 2012;12:1350–1359. doi: 10.1007/s11368-012-0554-5
  • Park J, Choppala G, Bolan N, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011;348:439–451. doi: 10.1007/s11104-011-0948-y
  • Rizwan M, Imtiaz M, Chhajro M, et al. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Environ Technol. 2016;37(21):2679–2686. doi: 10.1080/09593330.2016.1158870
  • Denyes MJ, Langlois VS, Rutter A, et al. The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci Total Environ. 2012;437:76–82. doi: 10.1016/j.scitotenv.2012.07.081
  • Shen Y, Li H, Zhu W, et al. Microalgal-biochar immobilized complex: a novel efficient biosorbent for cadmium removal from aqueous solution. Bioresour Technol. 2017;244:1031–1038. doi: 10.1016/j.biortech.2017.08.085
  • Tribedi P, Sil A. Bioaugmentation of polyethylene succinate-contaminated soil with Pseudomonas sp. AKS2 results in increased microbial activity and better polymer degradation. Environ Sci Pollut R. 2013;20:1318–1326. doi: 10.1007/s11356-012-1080-0
  • Festa S, Coppotelli B, Morelli IS. Comparative bioaugmentation with a consortium and a single strain in a phenanthrene-contaminated soil: impact on the bacterial community and biodegradation. Appl Soil Ecol. 2016;98:8–19. doi: 10.1016/j.apsoil.2015.08.025
  • Teng Y, Luo Y, Sun M, et al. Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol. 2010;101:3437–3443. doi: 10.1016/j.biortech.2009.12.088
  • Labud V, Garcia C, Hernandez T. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere. 2007;66:1863–1871. doi: 10.1016/j.chemosphere.2006.08.021
  • Soil survey staff, keys to soil taxonomy. 11th ed. Washington (DC): USDA-Natural Resources Conservation Service; 2010.
  • Wang C, Gu L, Liu X, et al. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and theinfluence of coexisting pyrene. Int Biodeter Biodeg. 2016;111:78–84. doi: 10.1016/j.ibiod.2016.04.029
  • Sarma S, Pakshirajan K. Surfactant aided biodegradation of pyrene using immobilized cells of Mycobacterium frederiksbergense. Int Biodeter Biodegr. 2011;65:73–77. doi: 10.1016/j.ibiod.2010.09.004
  • Zhang X, Liu X, Liu S, et al. Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland. J Hazard Mater. 2011;193:45–51. doi: 10.1016/j.jhazmat.2011.07.094
  • Polti M, Atjián M, Amoroso M, et al. Soil chromium bioremediation: synergic activity of actinobacteria and plants. Int Biodeter Biodegr. 2011;65:1175–1181. doi: 10.1016/j.ibiod.2011.09.008
  • Ye J, Yin H, Peng H, et al. Pyrene removal and transformation by joint application of alfalfa and exogenous microorganisms and their influence on soil microbial community. Ecotox Environ Safe. 2014;110:129–135. doi: 10.1016/j.ecoenv.2014.08.031
  • Gryta A, Frąc M, Oszust K. The application of the biolog ecoplate approach in ecotoxicological evaluation of dairy sewage sludge. Appl Biochem Biotech. 2014;174:1434–1443. doi: 10.1007/s12010-014-1131-8
  • Lagerlöf J, Adolfsson L, Börjesson G, et al. Land-use intensification and agroforestry in the Kenyan highland: impacts on soil microbial community composition and functional capacity. Appl Soil Ecol. 2014;82:93–99. doi: 10.1016/j.apsoil.2014.05.015
  • Jiang Z, Li P, Wang Y, et al. Effects of roxarsone on the functional diversity of soil microbial community. Int Biodeter Biodegr. 2013;76:32–35. doi: 10.1016/j.ibiod.2012.06.010
  • Yu C, Hu XM, Deng W, et al. Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding mulberry subjected to long-term fertilization. Appl Soil Ecol. 2015;86:30–40. doi: 10.1016/j.apsoil.2014.09.013
  • Jiang W, Wang J, Tang J, et al. Soil bacterial functional diversity as influenced by cadmium, phenanthrene and degrade bacteria application. Environ Earth Sci. 2010;59:1717–1722. doi: 10.1007/s12665-009-0153-y
  • Deng F, Liao C, Yang C, et al. A new approach for pyrene bioremediation using bacteria immobilized in layer-by-layer assembled microcapsules: dynamics of soil bacterial community. RSC Adv 2016;6:20654–20663. doi: 10.1039/C5RA23273B
  • Rivelli V, Franzetti A, Gandolfi I, et al. Persistence and degrading activity of free and immobilised allochthonous bacteria during bioremediation of hydrocarbon-contaminated soils. Biodegradation. 2013;24:1–11. doi: 10.1007/s10532-012-9553-x
  • Sun M, Luo Y, Christie P, et al. Methyl-beta-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil. J Environ Sci-China. 2012;24(5):926–933. doi: 10.1016/S1001-0742(11)60865-6
  • Liu S, Cao Z, Liu H. Effect of ryegrass (Lolium multiflorum L.) growth on degradation of phenanthrene and enzyme activity in soil. Plant Soil Environ. 2013;6:247–253.
  • Ros M, Goberna M, Pascual J, et al. 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Meth. 2008;72:221–226. doi: 10.1016/j.mimet.2008.01.003
  • Cao Y, Wang J, Wu H, et al. Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression. Appl Soil Ecol. 2016;107:116–123. doi: 10.1016/j.apsoil.2016.05.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.