220
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Bacterial-mediated biodegradation of pentachlorophenol via electron shuttling

, &
Pages 2416-2424 | Received 04 Aug 2017, Accepted 15 Feb 2018, Published online: 01 Mar 2018

References

  • Yu H, Wang Y, Chen P, et al. Effect of nitrate addition on reductive transformation of pentachlorophenol in paddy soil in relation to iron (III) reduction. J Environ Manag. 2014;132:42–48. doi: 10.1016/j.jenvman.2013.10.020
  • Garbou AM, Clausen CA, Yesterbsky CL. Comparative study for the removal and destruction of pentachlorophenol using activated magnesium treatment systems. Chemosphere. 2017;166:267–274. doi: 10.1016/j.chemosphere.2016.09.139
  • Xu Y, He Y, Feng X, et al. Enhanced abiotic and biotic contributions to dechlorination of pentachlorophenol during Fe(III) reduction by an iron-reducing bacterium Clostridium beijerinckii Z. Sci Total Environ. 2014;473–474:215–223. doi: 10.1016/j.scitotenv.2013.12.022
  • Zheng W, Wang X, Yu H, et al. Global trends and diversity in pentachlorophenol levels in the environment and in humans: a meta-analysis. Environ Sci Technol. 2011;45:4668–4675. doi: 10.1021/es1043563
  • Khuzwayo Z, Chirwa EMN. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol. J Hazard Mater. 2017;321:424–431. doi: 10.1016/j.jhazmat.2016.08.069
  • D’Angelo EM, Reddy KR. Aerobic and anaerobic transformations of pentachlorophenol in wetland soils. Soil Sci Soc Am J. 2000;64:933–943. doi: 10.2136/sssaj2000.643933x
  • Thakur IS, Verma P, Upadhayaya K. Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp. from the chemostat. Biochem Biophys Res Commun. 2002;290:770–774. doi: 10.1006/bbrc.2001.6239
  • Watanabe K, Manefield M, Lee M, et al. Electron shuttles in biotechnology. Curr Opin Biotechnol. 2009;20:633–641. doi: 10.1016/j.copbio.2009.09.006
  • Zhang W, Li XM, Liu TX, et al. Enhanced nitrate reduction and current generation by Bacillus sp. in the presence of iron oxides. J Soils Sediments. 2012;12:354–365. doi: 10.1007/s11368-011-0460-2
  • Fathy R, Gomaa O, El-Hag Ali A, et al. Neutral red as a mediator for the enhancement of electricity production using domestic wastewater double chamber microbial fuel cell. Ann Microbiol. 2016;66:695–702. doi: 10.1007/s13213-015-1152-8
  • Tong H, Hu M, Chen M, et al. Burkholderiales participating in pentachlorophenol biodegradation in iron-reducing paddy soil as identified by stable isotope probing. Environ Sci Process Impacts. 2015;17:1282–1289. doi: 10.1039/C4EM00530A
  • Xu Z, Lin Z, Wang Z, et al. Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli. Chin J Chem Eng. 2015;23:1834–1839. doi: 10.1016/j.cjche.2015.08.013
  • Kao CM, Chai CT, Liu JK, et al. Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Res. 2004;38:663–672. doi: 10.1016/j.watres.2003.10.030
  • Tong H, Hu M, Li FB, et al. Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil. Soil Biol Biochem. 2014;70:142–150. doi: 10.1016/j.soilbio.2013.12.012
  • Wang W, Wang S, Hu Z, et al. Degradation kinetics of pentachlorophenol and changes in anaerobic microbial community with different dosing modes of co-substrate and zero-valent iron. Int Biodeterior Biodegradation. 2016;113:126–133. doi: 10.1016/j.ibiod.2015.12.006
  • Martin-Laurent F, Philippot L, Hallet S, et al. DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol. 2001;67:2354–2359. doi: 10.1128/AEM.67.5.2354-2359.2001
  • Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–1599. doi: 10.1093/molbev/msm092
  • Kanbel DB, Sormo KE, Crawford RL. Immobilization of bacteria in macro and microparticles In: Shaheen Humana D, editor. Bioremediation protocols. methods in biotechnology. Totowa (NJ): Press Inc.; 1997. p. 67.
  • Jayaseelan S, Ramaswamy D, Dharmaraj S. Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol. 2014;30:1159–1168. doi: 10.1007/s11274-013-1552-5
  • Richter K, Bucking C, Schicklberger M, et al. A simple and fast method to analyze the orientation of c-type cytochromes in the outer membrane of Gram-negative bacteria. J Microbiol Methods. 2010;82:184–186. doi: 10.1016/j.mimet.2010.04.011
  • Scherr KE. Chapter 8, hydrocarbon In: Vladimir Kutcherov, Anton Kolesnikov editors. Extracelular electron transfer in in situ petroleum hydrocarbon bioremediation. 2013. CC By 3.0 license DOI: 10.5772/53290
  • Huang JJ, Heiniger EK, McKinlay JB, et al. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Appl Environ Microbiol. 2010;76:7717–7722. doi: 10.1128/AEM.01143-10
  • Hong Y, Chen X, Guo J, et al. Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12. Appl Microbiol Biotechnol. 2007;74:230–238. doi: 10.1007/s00253-006-0657-2
  • Stams AJM, Huisman J, Garcia Encina PA, et al. Citric acid wastewater as electron donor for biological sulfate reduction. Appl Microbiol Biotechnol. 2009;83:957–963. doi: 10.1007/s00253-009-1995-7
  • Lee DH, Koh EH, Choi SR, et al. Effect of sodium citrate on growth of bacteria in blood culture. Ann Clin Microbiol. 2013;16:168–173. doi: 10.5145/ACM.2013.16.4.168
  • Karns JK, Killbane JJ, Duttagupta S, et al. Metabolism of halophenol by 2,3,5-trichlorophenoxyacetic acid degrading Pseudomonas cepecia. Appl Environ Microbiol. 1983;46:1176–1181.
  • Chen B, Wang Y, Ng I. Understanding interactive characteristics of biolelectricity generation and reductive decolorization using Proteus hauseri. Bioresour Technol. 2011;102:1159–1165. doi: 10.1016/j.biortech.2010.09.040
  • Ross DE, Brantley SL, Tien M. Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella onedensis MR-1. Appl Environ Microbiol. 2009;75:5218–5226. doi: 10.1128/AEM.00544-09

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.