188
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of low cost organometallic-type catalysts for their application in microbial fuel cell technology

, , , , , , & show all
Pages 2425-2435 | Received 11 Dec 2017, Accepted 15 Feb 2018, Published online: 05 Mar 2018

References

  • Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energ Policy. 2009;37:181–189. doi: 10.1016/j.enpol.2008.08.016
  • Potter MC. Electrical effects accompanying the decomposition of organic compounds. P Roy Soc Lond. 1911;84:260–276. doi: 10.1098/rspb.1911.0073
  • Logan BE, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40:5181–5192. doi: 10.1021/es0605016
  • Hernández-Fernández FJ, de los Ríos AP, Salar-García MJ, et al. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment. Fuel Process Technol. 2015;138:284–297. doi: 10.1016/j.fuproc.2015.05.022
  • Kumar R, Singh L, Zularisam AW, et al. Microbial fuel cell is emerging as a versatile technology: a review on its possible applications, challenges and strategies to improve the performances. Int J Energy Res. 2018;42:369–394. doi: 10.1002/er.3780
  • Zhang S, You J, Kennes C, et al. Current advances of VOCs degradation by bioelectrochemical systems: a review. Chem Eng J 2018;334:2625–2637. doi: 10.1016/j.cej.2017.11.014
  • Oliveira VB, Simões M, Melo LF, et al. Overview on the developments of microbial fuel cells. Biochem Eng J. 2013;73:53–64. doi: 10.1016/j.bej.2013.01.012
  • Antolini E. Composite materials for polymer electrolyte membrane microbial fuel cells. Biosens Bioelectron. 2015;69:54–70. doi: 10.1016/j.bios.2015.02.013
  • Lu M, Kharkwal S, Ng HY, et al. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells. Biosens Bioelectron. 2011;26:4728–4732. doi: 10.1016/j.bios.2011.05.036
  • Zhang L, Liu C, Zhuang L, et al. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosens Bioelectron. 2009;24:2825–2829. doi: 10.1016/j.bios.2009.02.010
  • Kim JR, Kim JY, Han SB, et al. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells. Bioresour Technol. 2011;102:342–347. doi: 10.1016/j.biortech.2010.07.005
  • Liu B, Bruckne C R, Lei Y, et al. Cobalt porphyrin-based material as methanol tolerant cathode in single chamber microbial fuel cells (SCMFCs). J Power Sources. 2014;257:246–253. doi: 10.1016/j.jpowsour.2014.01.117
  • Birry L, Mehta P, Jaouen F, et al. Application of iron-based cathode catalysts in a microbial fuel cell. Electrochim Acta. 2011;56:1505–1511. doi: 10.1016/j.electacta.2010.08.019
  • Gong XB, You SJ, Wang XH, et al. Silver–tungsten carbide nanohybrid for efficient electrocatalysis of oxygen reduction reaction in microbial fuel cell. J Power Sources. 2013;225:330–337. doi: 10.1016/j.jpowsour.2012.10.047
  • Lefebvre O, Tan Z, Shen Y, et al. Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material. Bioresour Technol. 2013;127:158–164. doi: 10.1016/j.biortech.2012.10.005
  • Salar-García MJ, Ortiz-Martínez VM, de los Ríos AP, et al. A method based on impedance spectroscopy for predicting the behavior of novel ionic liquid-polymer inclusion membranes in microbial fuel cells. Energy. 2015;89:648–654. doi: 10.1016/j.energy.2015.05.149
  • Kawamichi T, Haneda T, Kawano M, et al. X-ray observation of a transient hemiaminal trapped in a porous network. Nature. 2009;461:633–635. doi: 10.1038/nature08326
  • Mehta A, Thaker A, Londhe V, et al. Reinvestigating Raney nickel mediated selective alkylation of amines with alcohols via hydrogen autotransfer methodology. Appl Catal A-Gen. 2014;478:241–251. doi: 10.1016/j.apcata.2014.04.009
  • Chade D, Berlouis L, Infieled D, et al. Evaluation of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysers. J Hydrogen Energy. 2013;38:14380–14390. doi: 10.1016/j.ijhydene.2013.09.012
  • Solmaz R, Salci A, Yukse H, et al. Preparation and characterization of Pd-modified Raney-type NiZn coatings and their application for alkaline water electrolysis. Int J Hydrogen Energy. 2017;42:2464–2475. doi: 10.1016/j.ijhydene.2016.07.221
  • Ilikti H, Benabdalla T, Boukreris S, et al. Electrocatalytic drogenation and hydrogenolysis of aromatic halides by Raney nickel in the presence of different surfactants. Tenside Surfact Det. 2008;45:126–130. doi: 10.3139/113.100369
  • Selembo PA, Merrill MD, Logan BE. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources. 2009;190:271–278. doi: 10.1016/j.jpowsour.2008.12.144
  • Liu JN, Wu BW, Zhang B, et al. Synthesis and characterization of metal complexes of Cu(II), Ni(II), Zn(II), Co(II), Mn(II) and Cd(II) with tetradentate Schiff bases. Turk J Chem. 2006;30:41–48.
  • Nagajothi A, Kiruthika A, Chitra S, et al. Fe(III) complexes with Schiff base ligands: synthesis, characterization, antimicrobial studies. Res J Chem Sci. 2013;3:35–43.
  • Aldenier A, Chehimi MM, Gallardo I, et al. Electrochemical oxidation of aliphatic amines and their attachment to carbon and metal surfaces. Nanoscale Res Lett. 2004;20:8243–8253.
  • Ouari K, Bendia S, Weiss J, et al. Spectroscopic, crystal structural and electrochemical studies of zinc(II)-Schiff base complex obtained from 2,3-diaminobenzene and 2-hydroxy naphthaldehyde. Spectrochim Acta A. 2015;135:624–631. doi: 10.1016/j.saa.2014.07.034
  • Shakir M, Hanif S, Sherwani MA, et al. Pharmacologically significant complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) of novel schiff base ligand, (E)-N-(furan-2-yl methylene) quinolin-8-amine: synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies. J. Mol. Struct. 2015;1092:143–159. doi: 10.1016/j.molstruc.2015.03.012
  • Charef MA, Kameche M, Ouis M, et al. Electrochemical and spectroscopic characterisations of cation exchange membrane equilibrated in acid and salt solutions: application as separator in microbial fuel cell. Phys Chem Liq. 2015;53:717–731. doi: 10.1080/00319104.2015.1033419
  • Ait Ali Yahia S, Hamadou L, Salar-García MJ, et al. Tio2 nanotubes as alternative cathode in microbial fuel cells: effect of annealing treatment on its performance. Appl Surf Sci. 2016;387:1037–1045. doi: 10.1016/j.apsusc.2016.07.018
  • Ansari SA, Khan MM, Ansari MO, et al. Improved electrode performance in microbial fuel cells and the enhanced visible light-induced photoelectrochemical behaviour of PtOx@M-TiO2 nanocomposites. Ceram Int. 2015;41:9131–9139. doi: 10.1016/j.ceramint.2015.03.321
  • Chen QY, Liu JS, Liu Y, et al. Hydrogen production on TiO2 nanorod arrays cathode coupling with bio-anode with additional electricity generation. J Power Sources. 2013;238:345–349. doi: 10.1016/j.jpowsour.2013.04.066
  • Louki S, Touach N-E, Benzaouak A, et al. Preparation of new ferroelectric Li0.95Ta0.57Nb0.38Cu0.15O3 materials as photocatalysts in microbial fuel cells. Can J Chem Eng. 2018;42:139. doi:10.1002/cjce.23117.
  • Ortiz-Martínez VM, Salar-García MJ, Touati K, et al. Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells. Energy. 2016;113:1241–1249. doi: 10.1016/j.energy.2016.07.127
  • Benzaouak A, Touach N-E, Ortiz-Martínez VM, et al. Ferroelectric LiTaO3 as novel photo-electrocatalyst in microbial fuel cells. Environ Prog Sustain Energy 2017;36:1568–1574. doi: 10.1002/ep.12609
  • Kherat M, Hariti M, Mameri N. Comparison of the chemical removal rates of a low cost microbial fuel cel and an aerated activated sludge bioreacteur, and evaluation of its performances. Rev Energ Renouv. 2014;17:279–289.
  • Touach N, Ortiz-Martínez VM, Salar-García MJ, et al. Influence of the preparation method of MnO2-based cathodes on the performance of single-chamber MFCs using wastewater. Sep Purif Technol 2016;171:174–181. doi: 10.1016/j.seppur.2016.07.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.