487
Views
16
CrossRef citations to date
0
Altmetric
Articles

Improving the compression dewatering of sewage sludge through bioacidification conditioning driven by Acidithiobacillus ferrooxidans: dewatering rate vs. dewatering extent

, , &
Pages 3176-3189 | Received 12 Feb 2018, Accepted 09 Apr 2018, Published online: 22 Apr 2018

References

  • Feng L, Luo J, Chen Y. Dilemma of sewage sludge treatment and disposal in China. Environ Sci Technol. 2015;49:4781–4782. doi: 10.1021/acs.est.5b01455
  • Abelleira J, Pérez-Elvira SI, Portela JR, et al. Advanced thermal hydrolysis: optimization of a novel thermochemical process to aid sewage sludge treatment. Environ Sci Technol. 2012;46:6158–6166. doi: 10.1021/es204203y
  • Hu W, Zheng G, Fang D, et al. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study. Waste Manage. 2015;44:55–62. doi: 10.1016/j.wasman.2015.07.023
  • Lo MCI, Lai KCK, Chen GH. Salinity effect on mechanical dewatering of sludge with and without chemical conditioning. Environ Sci Technol. 2001;35:4691–4696. doi: 10.1021/es010834x
  • Novak JT. Dewatering of sewage sludge. Dry Technol. 2006;24:1257–1262. doi: 10.1080/07373930600840419
  • Jin L, Zhang G, Tian H. Current state of sewage treatment in China. Water Res. 2014;66:85–98. doi: 10.1016/j.watres.2014.08.014
  • Lundin M, Olofsson M, Pettersson GJ, et al. Environmental and economic assessment of sewage sludge handling options. Resour Conserv Recy. 2004;41:255–278. doi: 10.1016/j.resconrec.2003.10.006
  • Neyens E, Baeyens J, Dewil R, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater. 2004;106:83–92. doi: 10.1016/j.jhazmat.2003.11.014
  • Vaxelaire J, Cézac P. Moisture distribution in activated sludges: a review. Water Res. 2004;38:2215–2230. doi: 10.1016/j.watres.2004.02.021
  • Lee DJ, Lai JY, Mujumdar AS. Moisture distribution and dewatering efficiency for wet materials. Dry Technol. 2006;24:1201–1208. doi: 10.1080/07373930600838041
  • Jin B, Wilén B, Lant P. Impacts of morphological, physical and chemical properties of sludge flocs on dewaterability of activated sludge. Chem Eng J. 2004;98:115–126. doi: 10.1016/j.cej.2003.05.002
  • Qi Y, Thapa KB, Hoadley AFA. Application of filtration aids for improving sludge dewatering properties – a review. Chem Eng J. 2011;171:373–384. doi: 10.1016/j.cej.2011.04.060
  • Novak JT, O’Brien JH. Polymer conditioning of chemical sludges. J Water Pollut Control Fed. 1975;47:2397–2410.
  • Smollen M, Kafaar A. Investigation into alternative sludge conditioning prior to dewatering. Water Sci Technol. 1997;36:115–119. doi: 10.2166/wst.1997.0401
  • Vaxelaire J, Olivier J. Conditioning for municipal sludge dewatering. From filtration compression cell tests to belt press. Dry Technol. 2006;24:1225–1233. doi: 10.1080/07373930600838090
  • Raynaud M, Vaxelaire J, Olivier J, et al. Compression dewatering of municipal activated sludge: effects of salt and pH. Water Res. 2012;46:4448–4456. doi: 10.1016/j.watres.2012.05.047
  • Chen Y, Yang H, Gu G. Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Res. 2001;35:2615–2620. doi: 10.1016/S0043-1354(00)00565-0
  • Zheng G, Zhou L, Wang S. An acid-tolerant heterotrophic microorganism role in improving tannery sludge bioleaching conducted in successive multibatch reaction systems. Environ Sci Technol. 2009;43:4151–4156. doi: 10.1021/es803062r
  • Zheng G, Zhou L. Supplementation of inorganic phosphate enhancing the removal efficiency of tannery sludge-borne Cr through bioleaching. Water Res. 2011;45:5295–5301. doi: 10.1016/j.watres.2011.07.031
  • Liu F, Zhou L, Zhou J, et al. Improvement of sludge dewaterability and removal of sludge-borne metals by bioleaching at optimum pH. J Hazard Mater. 2012;221-222:170–177. doi: 10.1016/j.jhazmat.2012.04.028
  • Wong JWC, Zhou J, Kurade MB, et al. Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching. Bioresour Technol. 2015;179:78–83. doi: 10.1016/j.biortech.2014.10.099
  • Zheng G, Huo M, Zhou L. Extracellular polymeric substances level determines the sludge dewaterability in bioleaching process. J Environ Eng. 2016;142(2):04015060. doi: 10.1061/(ASCE)EE.1943-7870.0001008
  • Zheng G, Wang Z, Wang D, et al. Enhancement of sludge dewaterability by sequential inoculation of filamentous fungus mucor circinelloides ZG-3 and acidithiobacillus ferrooxidans LX5. Chem Eng J. 2016;284:216–223. doi: 10.1016/j.cej.2015.08.119
  • Huo M, Zheng G, Zhou L. Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content. Bioresour Technol. 2014;168:190–197. doi: 10.1016/j.biortech.2014.02.098
  • Zhou J, Zheng G, Zhang X, et al. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching. PLoS One. 2014;9:e102688. doi: 10.1371/journal.pone.0102688
  • APHA. Standard methods for the examination of water and wastewater. 21st ed. Washington (DC): APHA; 2005.
  • Feng X, Deng J, Lei H, et al. Dewaterability of waste activated sludge with ultrasound conditioning. Bioresour Technol. 2009;100:1074–1081. doi: 10.1016/j.biortech.2008.07.055
  • Liu F, Zhou J, Wang D, et al. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods. J Environ Sci. 2012;24:1403–1410. doi: 10.1016/S1001-0742(11)60958-3
  • Pan JR, Huang C, Cherng M, et al. Correlation between dewatering index and dewatering performance of three mechanical dewatering devices. Adv Environ Res. 2003;7:599–602. doi: 10.1016/S1093-0191(02)00052-7
  • Fu JJ, Xia CJ, Wang Y. An investigation for the key role of surfactants in activated sludge dewatering. J Chem Eng Jpn. 2010;43:238–246. doi: 10.1252/jcej.09we176
  • Lu Y, Zheng G, Wu W, et al. Significances of deflocculated sludge flocs as well as extracellular polymeric substances in influencing the compression dewatering of chemically acidified sludge. Sep Sci Technol. 2017;176:243–251.
  • Guo X, Liu J, Xiao B. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge. J Biotechnol. 2014;188:130–135. doi: 10.1016/j.jbiotec.2014.08.025
  • Xiao B, Liu C, Liu J, et al. Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge. Bioresour Technol. 2015;196:109–115. doi: 10.1016/j.biortech.2015.07.056
  • Gu X, Wong JWC. Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge. Environ Sci Technol. 2004;38:2934–2939. doi: 10.1021/es0347134
  • Yu GH, He PJ, Shao LM, et al. Stratification structure of sludge flocs with implications to dewaterability. Environ Sci Technol. 2008;42:7944–7949. doi: 10.1021/es8016717
  • Wang Z, Zheng G, Zhou L. Degradation of slime extracellular polymeric substances and inhibited sludge flocs destruction contribute to sludge dewaterability enhancement during fungal treatment of sludge using filamentous fungus mucor sp. GY-1. Bioresour Technol. 2015;192:514–521. doi: 10.1016/j.biortech.2015.06.019
  • Chu CP, Chang BV, Liao GS, et al. Observations on changes in ultrasonically treated waste-activated sludge. Water Res. 2001;35:1038–1046. doi: 10.1016/S0043-1354(00)00338-9
  • Örmeci B, Vesilind PA. Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges. Water Res. 2001;35:4299–4306. doi: 10.1016/S0043-1354(01)00174-9
  • Liao Y, Zhou L, Bai S, et al. Occurrence of biogenic schwertmannite in sludge bioleaching environments and its adverse effect on solubilization of sludge-borne metals. Appl Geochem. 2009;24:1739–1746. doi: 10.1016/j.apgeochem.2009.05.003
  • Wang S, Zheng G, Zhou L. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to acidithiobacillus species. Water Res. 2010;44:5423–5431. doi: 10.1016/j.watres.2010.06.055
  • Chen Y, Jiang S, Yuan H, et al. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 2007;41:683–689. doi: 10.1016/j.watres.2006.07.030
  • Nagata T, Meon B, Kirchman DL. Microbial degradation of peptidoglycan in seawater. Limnol Oceanogr. 2003;48:745–754. doi: 10.4319/lo.2003.48.2.0745
  • Zhang W, Cao B, Wang D, et al. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS). Water Res. 2016;88:728–739. doi: 10.1016/j.watres.2015.10.049
  • Park C, Novak JT. Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Res. 2007;41:1679–1688. doi: 10.1016/j.watres.2007.01.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.