777
Views
18
CrossRef citations to date
0
Altmetric
Articles

Enhanced degradation of perfluorooctanoic acid by a genome shuffling-modified Pseudomonas parafulva YAB-1

, , , , , & show all
Pages 3153-3161 | Received 26 Dec 2017, Accepted 07 Apr 2018, Published online: 02 May 2018

References

  • Pramanik BK, Pramanik SK, Suja F. Impact of biological filtrations for organic micropollutants and polyfluoroalkyl substances removal from secondary effluent. Environ Technol. 2016;37(15):1857–1864. doi: 10.1080/09593330.2015.1134677
  • Shiwaku Y, Lee P, Thepaksorn P, et al. Spatial and temporal trends in perfluorooctanoic and perfluorohexanoic acid in well, surface, and tap water around a fluoropolymer plant in Osaka, Japan. Chemosphere. 2016;164:603–610. doi: 10.1016/j.chemosphere.2016.09.006
  • Supreeyasunthorn P, Boontanon SK, Boontanon N. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2016;51(6):472–477. doi: 10.1080/10934529.2015.1128713
  • Liu B, Zhang H, Yao D, et al. Perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China: spatial distribution, sources and health risk assessment. Chemosphere. 2015;138:511–518. doi: 10.1016/j.chemosphere.2015.07.012
  • Rankin K, Mabury SA, Jenkins TM, et al. A North American and global survey of perfluoroalkyl substances in surface soils: distribution patterns and mode of occurrence. Chemosphere. 2016;161:333–341. doi: 10.1016/j.chemosphere.2016.06.109
  • Pramanik BK, Pramanik SK, Sarker DC, et al. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water. Environ Technol. 2017;38(15):1937–1942. doi: 10.1080/09593330.2016.1240716
  • Wang QW, Yang GP, Zhang ZM, et al. Perfluoroalkyl acids in surface sediments of the East China Sea. Environ Pollut. 2017;231:59–67. doi: 10.1016/j.envpol.2017.07.078
  • Squadrone S, Ciccotelli V, Prearo M, et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): emerging contaminants of increasing concern in fish from Lake Varese, Italy. Environ Monit Asses. 2015;187(7):799. doi: 10.1007/s10661-015-4686-0
  • Pramanik BK, Pramanik SK, Suja F. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment. Environ Technol. 2015;36(20):2610–2617. doi: 10.1080/09593330.2015.1040079
  • Dhingra R, Winquist A, Darrow LA, et al. A study of reverse causation: examining the associations of perfluorooctanoic acid serum levels with two outcomes. Environ Health Perspect. 2017;125(3):416–421. doi: 10.1289/EHP273
  • Worley RR, Moore SM, Tierney BC, et al. Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. Environ Int. 2017;106:135–143. doi: 10.1016/j.envint.2017.06.007
  • Mao P, Wang D. Biomonitoring of perfluorinated compounds in a drop of blood. Environ Sci Technol. 2015;49(11):6808–6814. doi: 10.1021/acs.est.5b01442
  • Espana VAA, Mallavarapu M, Naidu R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): a critical review with an emphasis on field testing. Environ Technol Innov. 2015;4:168–181. doi: 10.1016/j.eti.2015.06.001
  • Choi GH, Lee DY, Jeong DK, et al. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) concentrations in the South Korean agricultural environment: a national survey. J Integrat Agric. 2017;16(8):1841–1851. doi: 10.1016/S2095-3119(16)61585-X
  • Lee YC, Chen YP, Chen MJ, et al. Reductive defluorination of perfluorooctanoic acid by titanium(III) citrate with vitamin B 12 and copper nanoparticles. J Hazard Mater. 2017;340:336–343. doi: 10.1016/j.jhazmat.2017.06.020
  • Liu J, Qu R, Wang Z, et al. Thermal- and photo-induced degradation of perfluorinated carboxylic acids: kinetics and mechanism. Water Res. 2017;126:12–18. doi: 10.1016/j.watres.2017.09.003
  • Trojanowicz M, Bobrowski K, Szostek B, et al. A survey of analytical methods employed for monitoring of advanced oxidation/reduction processes for decomposition of selected perfluorinated environmental pollutants. Talanta. 2018;177:122–141. doi: 10.1016/j.talanta.2017.09.002
  • Ma QC, Liu L, Cui W, et al. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Yb-doped Ti/SnO2–Sb/PbO2 anodes and determination of the optimal conditions. RSC Adv. 2015;5(103):84856–84864. doi: 10.1039/C5RA14299G
  • Wang Y, Zhang PY. Enhanced photochemical decomposition of environmentally persistent perfluorooctanoate by coexisting ferric ion and oxalate. Environ Sci Pollut Res Int. 2016;23(10):9660–9668. doi: 10.1007/s11356-016-6205-4
  • Li YM, Zhang FS. Characterization of a cetyltrimethyl ammonium bromide-modified sorbent for removal of perfluorooctane sulphonate from water. Environ Technol. 2014;35(17-20):2556–2568. doi: 10.1080/09593330.2014.912253
  • Tandjaoui N, Abouseoud M, Couvert A, et al. A combination of absorption and enzymatic biodegradation: phenol elimination from aqueous and organic phase. Environ Technol. 2017;152:1–8.
  • Kwon BG, Lim HJ, Na SH, et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant. Chemosphere. 2014;109:221–225. doi: 10.1016/j.chemosphere.2014.01.072
  • Yi LB, Chai LY, Xie Y, et al. Isolation, identification, and degradation performance of a PFOA-degrading strain. Genet Mol Res. 2016;15(2):235–246. doi: 10.4238/gmr.15028043
  • Zhang YX, Perry K, Vinci VA, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature. 2002;415(6872):644–646. doi: 10.1038/415644a
  • Patnaik R, Louie S, Gavrilovic V, et al. Genome shuffling of lactobacillus for improved acid tolerance. Nat Biotechnol. 2002;20(7):707. doi: 10.1038/nbt0702-707
  • Dai MH, Copley SD. Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Appl Environ Microbiol. 2004;70(4):2391–2397. doi: 10.1128/AEM.70.4.2391-2397.2004
  • Luna-Flores CH, Palfreyman RW, Krömer JO, et al. Improved production of propionic acid using genome shuffling. Biotechnol J. 2017;12(2):23–30. doi: 10.1002/biot.201600120
  • Lee BU, Choi MS, Kim DM, et al. Genome shuffling of Stenotrophomonas maltophilia OK-5 for improving the degradation of explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Curr Microbiol. 2017;74(2):1–9. doi: 10.1007/s00284-016-1179-5
  • Ulaganathan K, Goud S, Reddy M, et al. Genome engineering for breaking barriers in lignocellulosic bioethanol production. Renew Sustain Energy Rev. 2017;74:1080–1107. doi: 10.1016/j.rser.2017.01.028
  • Cobb RE, Si T, Zhao HM. Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol. 2012;16:285–291. doi: 10.1016/j.cbpa.2012.05.186
  • Dasu K, Nakayama SF, Yoshikane M, et al. An ultra-sensitive method for the analysis of perfluorinated alkyl acids in drinking water using a column switching high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2017;1494:46–54. doi: 10.1016/j.chroma.2017.03.006
  • Nikolić MAL, Gauthier E, Colwell JM, et al. The challenges in lifetime prediction of oxodegradable polyolefin and biodegradable polymer films. Polym Degrad Stab. 2017;145:102–119. doi: 10.1016/j.polymdegradstab.2017.07.018
  • Schröder HF. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. J Chromatogr A. 2003;1020(1):131–151. doi: 10.1016/S0021-9673(03)00936-1
  • Meesters RJW, Schröder HF. Perfluorooctane sulfonate: a quite mobile anionic anthropogenic surfactant, ubiquitously found in the environment. Water Sci Technol. 2004;50(5):235–242. doi: 10.2166/wst.2004.0333
  • Bassalo MC, Liu R, Gill RT. Directed evolution and synthetic biology applications to microbial systems. Curr Opin Biotechnol. 2016;39:126–133. doi: 10.1016/j.copbio.2016.03.016
  • Lee BU, Cho YS, Park SC, et al. Enhanced degradation of TNT by genome-shuffled Stenotrophomonas maltophilia OK-5. Curr Microbiol. 2009;59(3):346–351. doi: 10.1007/s00284-009-9443-6
  • El-Gendy MM, El-Bondkly AM. Genome shuffling of marine derived bacterium Nocardia sp. ALAA 2000 for improved ayamycin production. Antonie Van Leeuwenhoek. 2011;99:773–780. doi: 10.1007/s10482-011-9551-8
  • Zhang K, Guo YM, Yao P, et al. Characterization and directed evolution of BliGO, a novel glycine oxidase from Bacillus licheniformis. Enzyme Microb Technol. 2016;85:12–18. doi: 10.1016/j.enzmictec.2015.12.012
  • Klinsupa W, Phansiri S, Thongpradis P, et al. Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade(-)) and white mutant (prototroph). J Biotechnol. 2016;217:62–71. doi: 10.1016/j.jbiotec.2015.11.002
  • Liu YP, Tang HZH, Lin ZL, et al. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv. 2015;33(7):1484–1492. doi: 10.1016/j.biotechadv.2015.06.001
  • Li S, Li F, Chen XS, et al. Genome shuffling enhanced ε-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus. Appl Biochem Biotechnol. 2012;166:414–423. doi: 10.1007/s12010-011-9437-2
  • Wang SH, Duan MJ, Liu YL, et al. Enhanced production of fructosyltransferase in Aspergillus oryzae by genome shuffling. Biotechnol Lett. 2017;39(3):391–396. doi: 10.1007/s10529-016-2254-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.