463
Views
12
CrossRef citations to date
0
Altmetric
Articles

Microbial community composition and methanogens’ biodiversity during a temperature shift in a methane fermentation chamber

ORCID Icon, , , &
Pages 3252-3263 | Received 08 Nov 2017, Accepted 17 Apr 2018, Published online: 03 May 2018

References

  • Yu D, Kurola JM, Lähde K, et al. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes. J Environ Manag. 2014;143:54–60. doi: 10.1016/j.jenvman.2014.04.025
  • Lozano CJS, Mendoza MV, de Arango MC, et al. Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment. Waste Manag. 2009;29:704–711. doi: 10.1016/j.wasman.2008.06.021
  • Leven L, Anders RBE, Schnurer A. Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol. 2007;59:683–693. doi: 10.1111/j.1574-6941.2006.00263.x
  • Thian Z, Zhang Y, Li Y, et al. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Water Res. 2015;69:9–19. doi: 10.1016/j.watres.2014.11.001
  • Watanabe H, Kitamura T, Ochi S, et al. Inactivation of pathogenic bacteria under mesophilic and thermophilic conditions. Water Sci Technol. 1997;36:25–32. doi: 10.2166/wst.1997.0571
  • Amani T, Nosrati M, Sreekrishnan TR. A precise experimental study on key dissimilarities between mesophilic and thermophilic anaerobic digestion of waste activated sludge. Int J Environ Res. 2011;5:333–342.
  • Sekiguchi Y, Kamagata Y, Ohashi A, et al. Molecular and conventional analyses of microbial diversity in mesophilic and thermophilic upflow anaerobic sludge blanket granular sludges. Water Sci Technol. 2002;45:19–25. doi: 10.2166/wst.2002.0279
  • Hernon F, Forbes C, Colleran E. Identification of mesophilic and thermophilic fermentative species in anaerobic granular sludge. Water Sci Technol. 2006;54:19–24. doi: 10.2166/wst.2006.481
  • Song BYJ, Woo JH, Kwon SJ, et al. Microbial activity and population structure of anaerobic sludge alternately exposed to mesophilic and thermophilic conditions. Environ Eng. 2006;10:319–323.
  • Morris R, Schauer-Gimenez A, Bhattad U, et al. Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass. Microb Biotechnol. 2014;7(1):77–84. doi: 10.1111/1751-7915.12094
  • Friedrich MW. Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Method Enzymol. 2005;397:428–442. doi: 10.1016/S0076-6879(05)97026-2
  • Luton EP, Wayne JM, Sharp RJ, et al. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 2002;148:3521–3530. doi: 10.1099/00221287-148-11-3521
  • Barns SM, Delwiche CF, Palmer JD, et al. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA. 1996;93:9188–9193. doi: 10.1073/pnas.93.17.9188
  • Garcia JL, Patel BKC, Ollivier B. Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe. 2000;6:205–226. doi: 10.1006/anae.2000.0345
  • Siroshi SK, Chaudhary PP, Singh N, et al. The 16S rRNA and mcrA gene based comparative diversity of methanogens in cattle fed on high fibre based diet. Gene. 2013;523:161–166. doi: 10.1016/j.gene.2013.04.002
  • Sheppard SK, McCarthy AJ, Loughnane JP, et al. The impact of sludge amendment on methanogen community structure in an upland soil. Appl Soil Ecol. 2005;28:147–162. doi: 10.1016/j.apsoil.2004.07.004
  • Ziembińska-Buczynska A, Banach A, Bacza T, et al. Diversity and variability of methanogens during the shift from mesophilic to thermophilic conditions while biogas production. World J Microbiol Biotechnol. 2014;30:3047–3053. doi: 10.1007/s11274-014-1731-z
  • Klindworth A, Pruesse E, Schweer T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl Acid Res. 2013;41:e1. doi: 10.1093/nar/gks808
  • Ondreičková K, Kraic J. Impact of genetically modified stacked maize NK603 × MON810 on the genetic diversity of rhizobacterial communities. Agriculture (Polnohospodárstvo). 2015;61(4):193–148.
  • Keylock C J. Simpson diversity and the Shannon–Wiener index as special cases of a generalized entropy. Oikos 2005;109(1):203–207. doi: 10.1111/j.0030-1299.2005.13735.x
  • Vanwonterghem I, Jensen PD, Ho DP, et al. Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol. 2014;27:55–64. doi: 10.1016/j.copbio.2013.11.004
  • Nakano M, Zuber P. Strict and facultative anaerobes: medical and environmental aspects, horizon bioscience. British Library Cataloguing in Publication Data; 2004. p. 365–374.
  • Moset V, Poulsen M, Wahid R, et al. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microbiol Biotechnol. 2015;8(5):787–800. doi: 10.1111/1751-7915.12271
  • Kim M, Morrison M, Yu Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol. 2011;76:49–63. doi: 10.1111/j.1574-6941.2010.01029.x
  • Klocke M, Mähnert P, Mundt K, et al. Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol. 2007;30:139–151. doi: 10.1016/j.syapm.2006.03.007
  • Kampmann K, Ratering S, Kramer I, et al. Unexpected stability of bacteroidetes and firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol. 2012;78:2106–2119. doi: 10.1128/AEM.06394-11
  • Gagliano M, Braguglia A, Gallipoli, GA, et al. Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environ Sci Pollut Res. 2015;22:7339–7348. doi: 10.1007/s11356-014-3061-y
  • Wilén BM, Onuki M, Hermansson M. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability. Water Res. 2008;42:2300–2308. doi: 10.1016/j.watres.2007.12.013
  • Ariesyady HD, Ito T, Okabe S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 2007;41:1554–1568. doi: 10.1016/j.watres.2006.12.036
  • Guo J, Peng Y, Ni BJ, et al. Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Fact. 2015;14:1. doi: 10.1186/s12934-014-0183-3
  • Narihiro, T, Sekiguchi Y. Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol. 2007;18(3):273–278. doi: 10.1016/j.copbio.2007.04.003
  • Sekiguchi Y, Kamagata Y, Syutsubo K, et al. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology. 1998;144:2655–2665. doi: 10.1099/00221287-144-9-2655
  • De Vrieze JD, Saunders AM, He Y, et al. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res. 2015;75:312–323. doi: 10.1016/j.watres.2015.02.025
  • Shnurer A. Biogas production: microbiology and technology. Adv Biochem Eng Biotechnol. 2016;156:195–234.
  • Walter A, Knapp B, Farbmacher A, et al. Searching for links in the biotic characteristics and abiotic parameters of nine different biogas plants. Microbiol Biotechnol. 2012;5:717–730. doi: 10.1111/j.1751-7915.2012.00361.x
  • Elsden SR, Hilton MG, Waller JM. The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol. 1976;107:283–288. doi: 10.1007/BF00425340
  • Rydzak T, McQueen PD, Krokhin OV, et al. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol. 2012;12:214. doi: 10.1186/1471-2180-12-214
  • Shiratori H, Sasaya K, Ohiwa H, et al. Clostridium clariflavum sp nov and Clostridium caenicola sp nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Micr. 2009;59:1764–1770. doi: 10.1099/ijs.0.003483-0
  • Niu Q, Hojo T, Qiao W, et al. Characterization of methanogenesis, acidogenesis and hydrolysis in thermophilic methane fermentation of chicken manure. Chem Eng J. 2014;244:587–596. doi: 10.1016/j.cej.2013.11.074
  • Traversi D, Villa S, Lorenzi E, et al. Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J Environ Manag. 2012;111:173–177. doi: 10.1016/j.jenvman.2012.07.021
  • Lin YW, Tuan NN, Huang SL. Metaproteomic analysis of the microbial community present in a thermophilic swine manure digester to allow functional characterization: a case study. Int Biodeter Biodegrad. 2016;115:64–73. doi: 10.1016/j.ibiod.2016.06.013
  • Yamada T, Imachi H, Ohashi A, et al. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol. 2007;57:2299–2306. doi: 10.1099/ijs.0.65098-0
  • Boone DR, Bryant MP. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol. 1980;40:626–632.
  • Stams AJM, Plugge CM. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol. 2009;7:568–577. doi: 10.1038/nrmicro2166
  • Zeikus G. Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb Technol. 1979;1(4):243–252. doi: 10.1016/0141-0229(79)90043-7
  • Bouskova A, Dohanyos M, Schmidt JE, et al. Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge. Water Res. 2005;39(8):1481–1488. doi: 10.1016/j.watres.2004.12.042
  • Zhou J, Zhang R, Liu F, et al. Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour Technol. 2016;217:44–49. doi: 10.1016/j.biortech.2016.02.077

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.