249
Views
9
CrossRef citations to date
0
Altmetric
Articles

Determination of low solvent concentration by nano-porous silicon photonic sensors using volatile organic compound method

, , , , , , & show all
Pages 3403-3411 | Received 17 Sep 2017, Accepted 21 Apr 2018, Published online: 16 May 2018

References

  • Dai Q, Min X, Weng M. A review of polychlorinated biphenyls (PCBs) pollution in indoor air environment. J. Air Waste Manage Assoc. 2016;66(10):941–950. doi: 10.1080/10962247.2016.1184193
  • Mckee RH, Adenuga MD, Carrillo JC. Characterization of the toxicological hazards of hydrocarbon solvents. Crit Rev Toxicol. 2015;45(4):273–365. doi: 10.3109/10408444.2015.1016216
  • Plocoste T, Jacoby-Koaly S, Petit RH, et al. In situ quantification and tracking of volatile organic compounds with a portable mass spectrometer in tropical waste and urban sites. Environ Technol. 2017;38(18):2280–2294. doi: 10.1080/09593330.2016.1256439
  • Gupta N, Ashok Sonambekar A, Kumar Daksh S, et al. A rare presentation of methanol toxicity. Ann Indian Acad Neurol. 2013;16(2):249–251. doi: 10.4103/0972-2327.112484
  • Rana SV, Verma Y. Biochemical toxicity of benzene. J Environ Biol. 2005;26(2):157–168.
  • Debebe A, Redi-Abshiro M, Chandravanshi BS. Non-destructive determination of ethanol levels in fermented alcoholic beverages using Fourier transform mid-infrared spectroscopy. Chem Cent J. 2017;11(1):27. doi: 10.1186/s13065-017-0257-5
  • Boyaci IH, Genis HE, Guven B, et al. A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy. J Raman Spectrosc. 2012;43(8):1171–1176. doi: 10.1002/jrs.3159
  • Yang YR, Ren YF, Dong GM, et al. Determination of methanol in alcoholic beverages by two-dimensional near-infrared correlation spectroscopy. Anal Lett. 2016;49(14):2279–2289. doi: 10.1080/00032719.2016.1144060
  • Sales JA, de Lourdes Cardeal Z. Headspace solid-phase micro-extraction gas chromatography method for the determination of methanol in aspartame sweeteners. Food Addit Contam. 2003;20(6):519–523. doi: 10.1080/02652030310000107839
  • Pacheco-Fernández I, Herrera-Fuentes A, Delgado B, et al. Monitoring trihalomethanes in chlorinated waters using a dispersive liquid–liquid microextraction method with a non-chlorinated organic solvent and gas chromatography–mass spectrometry. Environ Technol. 2017;38(6):718–729. doi: 10.1080/09593330.2016.1209568
  • Kim HJ, Kim YY, Lee KW, et al. A distributed Bragg reflector porous silicon layer for optical interferometric sensing of organic vapour. Sensors Actuators B Chem. 2011;155(2):673–678. doi: 10.1016/j.snb.2011.01.028
  • Ouyang H, DeLouise LA, Christophersen M. (et al). Biosensing with one-dimensional photonic bandgap structure. In: Pauchet PM, Braun PV, editors. Tuning the optical response of photonic bandgap structures. Proceedings of SPIE; 2004 Oct 14; Bellingham, Washington; 2004;5511:71–80.
  • Stefano L D, Rotiroti L, Rea I, et al. Quantitative measurements of hydro-alcoholic binary mixtures by porous silicon optical microsensors. Phys Status Solidi. 2007;4(6):1941–1945. doi: 10.1002/pssc.200674336
  • Pham VH, Bui H, Hoang LH, et al. Nano-porous silicon microcavity sensors for determination of organic fuel mixtures. J Opt Soc Korea. 2013;17(5):423–427. doi: 10.3807/JOSK.2013.17.5.423
  • Moretti L, Rea I, Stefano D, et al. Periodic versus aperiodic: enhancing the sensitivity of porous silicon based optical sensors. Appl Phys Lett. 2007;90(19):191112. doi: 10.1063/1.2737391
  • Mishra V, Patel PN, Tiwari V. Nanoporous silicon microcavity based optical sensor to detect adulteration of petrol by organic solvents. Opt Quantum Electron. 2015;47(7):2299–2310. doi: 10.1007/s11082-014-0107-9
  • Mishra V, Tiwari V, Patel PN. Nanoporous silicon microcavity based fuel adulteration sensor. Silicon. 2016;8(3):409–415. doi: 10.1007/s12633-015-9311-x
  • Hasar UC, Ozbek IY, Cavusoglu B, et al. Identification of gases by porous optical sensors using reflectivity difference and wavelength shift. IEEE Photonics Technol Lett. 2015;27(6):596–599. doi: 10.1109/LPT.2014.2385811
  • Stefano L D, Moretti L, Rendina I, et al. Time-resolved sensing of chemical species in porous silicon optical microcavity. Sensors Actuators B Chem. 2004;100(1–2):168–172. doi: 10.1016/j.snb.2003.12.044
  • Stefano L D, Moretti L, Lamberti A, et al. Optical sensors for vapours, liquids, and biological molecules based on porous silicon technology. IEEE Trans Nanotechnol. 2004;3(1):49–54. doi: 10.1109/TNANO.2004.824019
  • Stefano L D, Moretti L, Rendina I, et al. Porous silicon microcavities for optical hydrocarbons detection. Sensors Actuators A: Phys. 2003;104(2):179–182. doi: 10.1016/S0924-4247(03)00057-8
  • Bui H, Nguyen TV, Nguyen TA, et al. A vapour sensor based on a porous silicon microcavity for the determination of solvent solutions. J Opt Soc Korea. 2014;18(4):301–306. doi: 10.3807/JOSK.2014.18.4.301
  • Rocchia M, Ellena M, Zeppa G. Determination of ethyl alcohol content in red wines with an optical alcohol meter based on nanostructured silicon. J Agric Food Chem. 2007;55(15):5984–5989. doi: 10.1021/jf070809w
  • Rocchia M, Rossi AM, Zeppa G. Determination of ethanol content in wine through a porous silicon oxide microcavity. Sensors Actuators B Chem. 2007;123(1):89–93. doi: 10.1016/j.snb.2006.07.025
  • Levitsky I. Porous silicon structures as optical gas sensors. Sensors. 2015;15(8):19968–19991. doi: 10.3390/s150819968
  • Gao J, Gao T, Li YY, et al. Vapour sensors based on optical interferometry from oxidized microporous silicon films. Langmuir. 2002;18(6):2229–2233. doi: 10.1021/la015568f
  • Ouyang H, Fauchet PM. Biosensing using porous silicon photonic bandgap structures. In: Du HH, editor. Photonic crystals and photonic crystal fibers for sensing applications. Proceedings of SPIE; 2005 Nov 11; Boston, MA, USA; 2005;6005:600508.
  • Thompson CM, Ruminski AM, Sega AG, et al. Preparation and characterization of pore-wall modification gradients generated on porous silicon photonic crystals using diazonium salts. Langmuir. 2011;27(14):8967–8973. doi: 10.1021/la201272e
  • Sciacca B, Secret E, Pace S, et al. Chitosan-functionalized porous silicon optical transducer for the detection of carboxylic acid-containing drugs in water. J Mater Chem. 2011;21(7):2294–2302. doi: 10.1039/C0JM02904A
  • Torres-Costa V, Salonen J, Jalkanen TM, et al. Carbonization of porous silicon optical gas sensors for enhanced stability and sensitivity. Phys Status Solidi. 2009;206(6):1306–1308. doi: 10.1002/pssa.200881052
  • Hoi VH, Bui H, Nguyen TV, et al. Progress in the research and development of photonic structure devices. Adv Nat Sci Nanosci Nanotechnol. 2016;7(1):15003. doi: 10.1088/2043-6262/7/1/015003
  • Chapron J, Alekseev SA, Lysenko V, et al. Analysis of interaction between chemical agents and porous Si nanostructures using optical sensing properties of infra-red Rugate filters. Sensors Actuators B Chem. 2007;120(2):706–711. doi: 10.1016/j.snb.2006.03.038
  • Salem MS, Sailor MJ, Fukami K, et al. Sensitivity of porous silicon Rugate filters for chemical vapour detection. J Appl Phys. 2008;103(8):083516. doi: 10.1063/1.2906337
  • Moretti L, De Stefano L, Rendina I. Quantitative analysis of capillary condensation in fractal-like porous silicon nanostructures. J Appl Phys. 2007;101(2):024309. doi: 10.1063/1.2423085
  • Liang W, Huang Y, Xu Y, et al. Highly sensitive fiber Bragg grating refractive index sensors. Appl Phys Lett. 2005;86(15):151122. doi: 10.1063/1.1904716
  • Caruso R, Scordino M, Traulo P. Determination of volatile compounds in wine by gas chromatography-flame ionization detection: comparison between the U.S. Environmental Protection Agency 3σ approach and Hubaux-Vos calculation of detection limits using ordinary and bivariate least squares. Food Compos Addit. 2012;95(2):459–471.
  • Regulation (EC) No. 110/2008. Official Journal of the European Union. L39/16;2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.