502
Views
10
CrossRef citations to date
0
Altmetric
Articles

Antibiotics mineralization by electrochemical and UV-based hybrid processes: evaluation of the synergistic effect

ORCID Icon, , , , &
Pages 3456-3466 | Received 27 Sep 2017, Accepted 11 May 2018, Published online: 29 May 2018

References

  • Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment. SciTotal Environ. 1999;225:109–118.
  • Kummerer K. Significance of antibiotics in the environment. J Antimicrob Chemoth. 2003;52:5–7. doi: 10.1093/jac/dkg293
  • Diaz-Cruz MS, López de Alda MJ, Barceló D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TRAC-Trend Anal Chem. 2003;22:340–351. doi: 10.1016/S0165-9936(03)00603-4
  • De Carvalho RN, Ceriani L, Ippolito A, et al. Development of the first Watch List under the Environmental Quality Standards Directive, in, European Commission, 2015.
  • Riaz L, Mahmood T, Khalid A, et al. Fluoroquinolones (FQs) in the environment: a review on their abundance, sorption and toxicity in soil. Chemosphere. 2018;191:704–720. doi: 10.1016/j.chemosphere.2017.10.092
  • Hirte K, Seiwert B, Schüürmann G, et al. New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater. Water Res. 2016;88:880–888. doi: 10.1016/j.watres.2015.11.028
  • D. Barcelo, J. Bennett, editors. Antibiotic Resistance in the Environment. Sci Total Environ; 2015.
  • Larsen TA, Lienert J, Joss A, et al. How to avoid pharmaceuticals in the aquatic environment. J Biotechnol. 2004;113:295–304. doi: 10.1016/j.jbiotec.2004.03.033
  • Barbosa MO, Moreira NFF, Ribeiro AR, et al. Occurrence and removal of organic micropollutants: an overview of the watch list of EU decision 2015/495. Water Res. 2016;94:257–279. doi: 10.1016/j.watres.2016.02.047
  • Niu J, Zhang L, Li Y, et al. Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: kinetics and mechanism. J Environ Sci. 2013;25:1098–1106. doi: 10.1016/S1001-0742(12)60167-3
  • Pazoki M, Parsa M, Farhadpour R. Removal of the hormones dexamethasone (DXM) by Ag doped on TiO2 photocatalysis. J Environ Chem Eng. 2016;4:4426–4434. doi: 10.1016/j.jece.2016.09.034
  • Wan Z, Hu J, Wang J. Removal of sulfamethazine antibiotics using CeFe-graphene nanocomposite as catalyst by Fenton-like process. J Environ Manage. 2016;182:284–291. doi: 10.1016/j.jenvman.2016.07.088
  • Marcelino RBP, Leão MMD, Lago RM, et al. Multistage ozone and biological treatment system for real wastewater containing antibiotics. J Environ Manage. 2017;195:110–116. doi: 10.1016/j.jenvman.2016.04.041
  • Zhu L, Santiago-Schübel B, Xiao H, et al. Electrochemical oxidation of fluoroquinolone antibiotics: mechanism, residual antibacterial activity and toxicity change. Water Res. 2016;102:52–62. doi: 10.1016/j.watres.2016.06.005
  • Choudhry GG, Webster GRB. Environmental photochemistry of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs): a review. Toxicol Environ Chem. 1987;14:43–61. doi: 10.1080/02772248709357193
  • Juretic D, Kusic H, Koprivanac N, et al. Photooxidation of benzene-structured compounds: influence of substituent type on degradation kinetic and sum water parameters. Water Res. 2012;46:3074–3084. doi: 10.1016/j.watres.2012.03.014
  • Benotti MJ, Stanford BD, Wert EC, et al. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Res. 2009;43:1513–1522. doi: 10.1016/j.watres.2008.12.049
  • Yuan F, Hu C, Hu X, et al. Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H2O2. Water Res. 2009;43:1766–1774. doi: 10.1016/j.watres.2009.01.008
  • Kim I, Yamashita N, Tanaka H. Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J Hazard Mater. 2009;166:1134–1140. doi: 10.1016/j.jhazmat.2008.12.020
  • da Silva SW, Viegas C, Ferreira JZ, et al. The effect of the UV photon flux on the photoelectrocatalytic degradation of endocrine-disrupting alkylphenolic chemicals. Environ Sci Pollut R. 2016;23:19237–19245. doi: 10.1007/s11356-016-7121-3
  • Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B-Environ. 2004;49:1–14. doi: 10.1016/j.apcatb.2003.11.010
  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, et al. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. 2013;93:1268–1287. doi: 10.1016/j.chemosphere.2013.07.059
  • Kapałka A, Fóti G, Comninellis C. The importance of electrode material in environmental electrochemistry: formation and reactivity of free hydroxyl radicals on boron-doped diamond electrodes. Electrochim Acta. 2009;54:2018–2023. doi: 10.1016/j.electacta.2008.06.045
  • Kapałka A, Lanova B, Baltruschat H, et al. Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochem Commun. 2008;10:1215–1218. doi: 10.1016/j.elecom.2008.06.005
  • Einaga Y, Foord JS, Swain GM. Diamond electrodes: diversity and maturity. MRS Bull. 2014;39:525–532. doi: 10.1557/mrs.2014.94
  • Fóti G, Mousty C, Reid V, et al. Characterization of DSA type electrodes prepared by rapid thermal decomposition of the metal precursor. Electrochim Acta. 1998;44:813–818. doi: 10.1016/S0013-4686(98)00240-0
  • Trasatti S. Electrocatalysis: understanding the success of DSA®. Electrochim Acta. 2000;45:2377–2385. doi: 10.1016/S0013-4686(00)00338-8
  • Pelegrini R, Peralta-Zamora P, de Andrade AR, et al. Electrochemically assisted photocatalytic degradation of reactive dyes. Appl Catal B-Environ. 1999;22:83–90. doi: 10.1016/S0926-3373(99)00037-5
  • Pinhedo L, Pelegrini R, Bertazzoli R, et al. Photoelectrochemical degradation of humic acid on a (TiO2)0.7(RuO2)0.3 dimensionally stable anode. Appl Catal B-Environ. 2005;57:75–81. doi: 10.1016/j.apcatb.2004.10.006
  • da Silva SW, Klauck CR, Siqueira MA, et al. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes. J Hazard Mater. 2015;282:241–248. doi: 10.1016/j.jhazmat.2014.08.014
  • Batchu SR, Panditi VR, O’Shea KE, et al. Photodegradation of antibiotics under simulated solar radiation: implications for their environmental fate. Sci Total Environ. 2014;470–471:299–310. doi: 10.1016/j.scitotenv.2013.09.057
  • Gonçalves AG, Órfão JJM, Pereira MFR. Ozonation of erythromycin over carbon materials and ceria dispersed on carbon materials. Chem Eng J. 2014;250:366–376. doi: 10.1016/j.cej.2014.04.012
  • Liu P, Zhang H, Feng Y, et al. Removal of trace antibiotics from wastewater: a systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chem Eng J. 2014;240:211–220. doi: 10.1016/j.cej.2013.11.057
  • Bolton JR, Bircher KG, Tumas W, et al. Figures-of merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems – (IUPAC Technical Report). Pure Appl Chem. 2001;73:627–637. doi: 10.1351/pac200173040627
  • Li G, Zhu M, Chen J, et al. Production and contribution of hydroxyl radicals between the DSA anode and water interface. J Environ Sci. 2011;23:744–748. doi: 10.1016/S1001-0742(10)60470-6
  • Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem Rev. 2009;109:6541–6569. doi: 10.1021/cr9001319
  • Niu X-Z, Busetti F, Langsa M, et al. Roles of singlet oxygen and dissolved organic matter in self-sensitized photo-oxidation of antibiotic norfloxacin under sunlight irradiation. Water Res. 2016;106:214–222. doi: 10.1016/j.watres.2016.10.002
  • Voigt M, Jaeger M. On the photodegradation of azithromycin, erythromycin and tylosin and their transformation products – A kinetic study. Sustain Chem Pharm. 2017;5:131–140. doi: 10.1016/j.scp.2016.12.001
  • Qiang Z, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 2004;38:2874–2890. doi: 10.1016/j.watres.2004.03.017
  • Andreozzi R, Caprio V, Ciniglia C, et al. Antibiotics in the environment: occurrence in Italian STPs. Fate, and preliminary assessment on algal toxicity of amoxicillin. Environ Sci Technol. 2004;38:6832–6838. doi: 10.1021/es049509a
  • Herrmann J-M. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal Environm. 2010;99:461–468. doi: 10.1016/j.apcatb.2010.05.012
  • Hartmann J, Bartels P, Mau U, et al. Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere. 2008;70:453–461. doi: 10.1016/j.chemosphere.2007.06.063
  • Coledam DAC, Aquino JM, Silva BF, et al. Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochim Acta. 2016;213:856–864. doi: 10.1016/j.electacta.2016.08.003
  • Martínez-Huitle CA, Rodrigo MA, Sirés I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev. 2015;115:13362–13407. doi: 10.1021/acs.chemrev.5b00361
  • Ohtani B. Photocatalysis A to Z – what we know and what we do not know in a scientific sense. J Photochem Photobiol C. 2010;11:157–178. doi: 10.1016/j.jphotochemrev.2011.02.001
  • Chong MN, Jin B, Chow CWK, et al. Recent developments in photocatalytic water treatment technology: a review. Water Res. 2010;44:2997–3027. doi: 10.1016/j.watres.2010.02.039
  • Li G, Zhu W, Chai X, et al. Partial oxidation of polyvinyl alcohol using a commercially available DSA anode. J Ind Eng Chem. 2015;31:55–60. doi: 10.1016/j.jiec.2015.05.042
  • Montgomery DC. Introduction to statistical quality control, 2009.
  • Montgomery DC. Design and analysis of experiments, 2012.
  • Kumar KV, Porkodi K, Rocha F. Langmuir–Hinshelwood kinetics – A theoretical study. Catal Commun. 2008;9:82–84. doi: 10.1016/j.catcom.2007.05.019
  • Daneshvar N, Rasoulifard MH, Khataee AR, et al. Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J Hazard Mater. 2007;143:95–101. doi: 10.1016/j.jhazmat.2006.08.072
  • Hussain S, Steter JR, Gul S, et al. Photo-assisted electrochemical degradation of sulfamethoxazole using a Ti/Ru0.3Ti0.7O2 anode: mechanistic and kinetic features of the process. J Environ Manage 2017;201:153–162. doi: 10.1016/j.jenvman.2017.06.043
  • Heberle ANA, da Silva SW, Klauck CR, et al. Electrochemical enhanced photocatalysis to the 2,4,6 tribromophenol flame retardant degradation. J Catal 2017;351:136–145. doi: 10.1016/j.jcat.2017.04.011
  • da Silva SW, Bordignon GL, Viegas C, et al. Treatment of solutions containing nonylphenol ethoxylate by photoelectrooxidation. Chemosphere. 2015;119:S101–S108. doi: 10.1016/j.chemosphere.2014.03.134
  • Xin Y, Gao M, Wang Y, et al. Photoelectrocatalytic degradation of 4-nonylphenol in water with WO3/TiO2 nanotube array photoelectrodes. Chem Eng J. 2014;242:162–169. doi: 10.1016/j.cej.2013.12.068
  • Souza FL, Aquino JM, Miwa DW, et al. Photo-assisted electrochemical degradation of the dimethyl phthalate ester on DSA® electrode. J Environ Chem Eng. 2014;2:811–818. doi: 10.1016/j.jece.2014.02.003
  • Hurwitz G, Hoek EMV, Liu K, et al. Photo-assisted electrochemical treatment of municipal wastewater reverse osmosis concentrate. Chem Eng J. 2014;249:180–188. doi: 10.1016/j.cej.2014.03.084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.