380
Views
8
CrossRef citations to date
0
Altmetric
Articles

Enhanced fluoride removal behaviour and mechanism by dicalcium phosphate from aqueous solution

, , , , , , , & show all
Pages 3668-3677 | Received 09 Feb 2018, Accepted 31 May 2018, Published online: 08 Jun 2018

References

  • Bhatnagar A, Kumar E, Sillanpaa M. Fluoride removal from water by adsorption-a review. Chem Eng J. 2011;171:811–840. doi: 10.1016/j.cej.2011.05.028
  • Chi YL, Chen YT, Hu CL, et al. Preparation of Mg-Al-Ce triple-metal composites for fluoride removal from aqueous solutions. J Mol Liq. 2017;242:416–422. doi: 10.1016/j.molliq.2017.07.026
  • Xiang W, Zhang GK, Zhang YL, et al. Synthesis and characterization of cotton-like Ca-Al-La composite as an adsorbent for fluoride removal. Chem Eng J. 2014;250:423–430. doi: 10.1016/j.cej.2014.03.118
  • Sternitzke V, Kaegi R, Audinot JN, et al. Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite:examination of a fluoridated surface layer. Environ Sci Technol. 2012;46:802–809. doi: 10.1021/es202750t
  • Reardon EJ, Wang YX. A limestone reactor for fluoride removal from wastewaters. Environ Sci Technol. 2000;34:3247–3253. doi: 10.1021/es990542k
  • Lahnid S, Tahaikt M, Elaroui K, et al. Economic evaluation of fluoride removal by electrodialysis. Desalination. 2008;230:213–219. doi: 10.1016/j.desal.2007.11.027
  • Ghosh D, Medhi CR, Purkait MK. Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections. Chemosphere. 2008;73:1393–1400. doi: 10.1016/j.chemosphere.2008.08.041
  • Meenakshi S, Viswanathan N. Identification of selective ion-exchange resin for fluoride sorption. J Colloid Interface Sci. 2007;308:438–450. doi: 10.1016/j.jcis.2006.12.032
  • Ndiayea PI, Moulin P, Dominguez L, et al. Removal of fluoride from electronic industrial effluent by RO membrane separation. Desalination. 2005;173:25–32. doi: 10.1016/j.desal.2004.07.042
  • Agarwal M, Rai K, Shrivastav R, et al. Deflouridation of water using amended clay. J Clean Prod. 2003;11:439–444. doi: 10.1016/S0959-6526(02)00065-3
  • Xu Y, Chai X. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal. Environ Technol. 2018;39:382–391. doi: 10.1080/09593330.2017.1301569
  • Wu LY, Zhang GK, Tang DD. A novel high efficient Mg-Ce-La adsorbent for fluoride removal: kinetics, thermodynamics and reusability. Desalin Water Treat. 2016;57:23844–23855. doi: 10.1080/19443994.2016.1138331
  • Kang DJ, Yu XL, Ge MF. Morphology-dependent properties and adsorption performance of CeO2 for fluoride removal. Chem Eng J. 2017;330:36–43. doi: 10.1016/j.cej.2017.07.140
  • Kanno CM, Sanders RL, Flynn SM, et al. Novel apatite-based sorbent for defluoridation: synthesis and sorption characteristics of nano-micro-crystalline hydroxyapatite-coated-limestone. Environ Sci Technol. 2014;48:5798–5807. doi: 10.1021/es405135r
  • Yu XL, Kang DJ, Hu YY, et al. One-pot synthesis of porous magnetic cellulose beads for the removal of metal ions. RSC Adv. 2014;4:31362–31369. doi: 10.1039/C4RA05601A
  • Tang DD, Zhang GK. Efficient removal of fluoride by hierarchical Ce-Fe bimetal oxides adsorbent: thermodynamics, kinetics and mechanism. Chem Eng J. 2016;283:721–729. doi: 10.1016/j.cej.2015.08.019
  • Kang DJ, Tong SR, Yu XL, et al. Template-free synthesis of 3D hierarchical amorphous aluminum oxide microspheres with broccoli-like structure and their application in fluoride removal. RSC Adv. 2015;5:19159–19165. doi: 10.1039/C4RA13688H
  • Wu X, Zhang Y, Dou X, et al. Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent. Chemosphere. 2007;69:1758–1764. doi: 10.1016/j.chemosphere.2007.05.075
  • Mirkovic MM, Pasti TDL, Dosen AM, et al. Adsorption of malathion on mesoporous monetite obtained by mechanochemical treatment of brushite. RSC Adv. 2016;6:12219–12225. doi: 10.1039/C5RA27554G
  • Zhang DY, Luo HM, Zheng LW, et al. Utilization of waste phosphogypsum to prepare hydroxyapatite nanoparticles and its application towards removal of fluoride from aqueous solution. J Hazard Mater. 2012;241-242:418–426. doi: 10.1016/j.jhazmat.2012.09.066
  • Mourabet M, El Boujaady H, El Rhilassi A, et al. Defluoridation of water using brushite: equilibrium, kinetic and thermodynamic studies. Desalination. 2011;278:1–9. doi: 10.1016/j.desal.2011.05.068
  • Jayarathne A, Weerasooriya R, Chandrajith R. A rapid method for the removal of fluoride in contaminated groundwater using natural crystalline apatite: a laboratory and field study. Environ Earth Sci. 2015;73:8369–8377. doi: 10.1007/s12665-014-3998-7
  • Sahin E, Ciftcioglu M. Monetite promoting effect of NaCl on brushite cement setting kinetics. J Mater Chem B. 2013;1:2943–2950. doi: 10.1039/c3tb20130a
  • Chen S, Grandfield K, Yu S, et al. Synthesis of calcium phosphate crystals with thin nacreous structure. Crystengcomm. 2016;18:1064–1069. doi: 10.1039/C5CE02078F
  • Shen CS, Wu LX, Chen YH, et al. Efficient removal of fluoride from drinking water using well-dispersed monetite bundles inlaid in chitosan beads. Chem Eng J. 2016;303:391–400. doi: 10.1016/j.cej.2016.05.103
  • Yu XL, Tong SR, Ge MF, et al. One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J Mater Chem A. 2013;1:959–965. doi: 10.1039/C2TA00315E
  • Yu XL, Tong SR, Ge MF, et al. Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites. Carbohydr Polym. 2013;92:269–275. doi: 10.1016/j.carbpol.2012.09.045
  • Singh SK, Townsend TG, Mazyck D, et al. Equilibrium and intra-particle diffusion of stabilized landfill leachate onto micro- and meso-porous activated carbon. Water Res. 2012;46:491–499. doi: 10.1016/j.watres.2011.11.007
  • Yu YD, Zhu YJ, Qi C, et al. Hydroxyapatite nanorod-assembled hierarchical microflowers: rapid synthesis via microwave hydrothermal transformation of CaHPO4 and their application in protein/drug delivery. Ceram Int. 2017;43:6511–6518. doi: 10.1016/j.ceramint.2017.02.073
  • Wang M, Yu XL, Yang CL, et al. Removal of fluoride from aqueous solution by Mg-Al-Zr triple-metal composite. Chem Eng J. 2017;322:246–253. doi: 10.1016/j.cej.2017.03.155
  • Ruan ZY, Tian YX, Ruan JF, et al. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution. Appl Surf Sci. 2017;412:578–590. doi: 10.1016/j.apsusc.2017.03.215
  • Carslaw DC, Rhys-Tyler G. New insights from comprehensive on-road measurements of NOx, NO2 and NH3 from vehicle emission remote sensing in London, UK. Atmos Environ. 2013;81:339–347. doi: 10.1016/j.atmosenv.2013.09.026
  • Nie YL, Hu C, Kong CP. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite. J Hazard Mater. 2012;233-234:194–199. doi: 10.1016/j.jhazmat.2012.07.020
  • Chen L, Zhang KS, He JY, et al. Enhanced fluoride removal from water by sulfate-doped hydroxyapatite hierarchical hollow microspheres. Chem Eng J. 2016;285:616–624. doi: 10.1016/j.cej.2015.10.036
  • Pandi K, Viswanathan N. In situ precipitation of nano-hydroxyapatite in gelatin polymatrix towards specific fluoride sorption. Int J Biol Macromol. 2015;74:351–359. doi: 10.1016/j.ijbiomac.2014.12.004
  • Chen YH, Shen CS, Rashid S, et al. Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water. J Colloid Interface Sci. 2017;491:207–215. doi: 10.1016/j.jcis.2016.12.032
  • Zhang L, Liu X, Huang X, et al. Adsorption of Pb2+ from aqueous solutions using Fe-Mn binary oxides-loaded biochar: kinetics, isotherm and thermodynamic studies. Environ Technol. 2018;1–24. DOI:10.1080/09593330.2018.1432693.
  • Kang D, Yu X, Ge M, et al. Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. J Environ Sci. 2017;54:1–12. doi: 10.1016/j.jes.2016.04.022
  • Toor M, Jin B. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J. 2012;187:79–88. doi: 10.1016/j.cej.2012.01.089
  • Kang D, Yu X, Ge M, et al. Insights into adsorption mechanism for fluoride on cactus-like amorphous alumina oxide microspheres. Chem Eng J. 2018;345:252–259. doi: 10.1016/j.cej.2018.03.174
  • Hokkanen S, Bhatnagar A, Sillanpaa M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016;91:156–173. doi: 10.1016/j.watres.2016.01.008
  • Tortet L, Gavarri JR, Nihoul G, et al. Study of protonic mobility in CaHPO4 center dot 2H(2)O (brushite) and CaHPO4 (monetite) by infrared spectroscopy and neutron scattering. J Solid State Chem. 1997;132:6–16. doi: 10.1006/jssc.1997.7383
  • Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials. 2007;28:3043–3054. doi: 10.1016/j.biomaterials.2007.02.028
  • Karimi M, Ramsheh MR, Ahmadi SM, et al. Reline-assisted green and facile synthesis of fluorapatite nanoparticles. Mater Sci Eng C-Mater Biol Appl. 2017;77:121–128. doi: 10.1016/j.msec.2017.03.217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.