734
Views
21
CrossRef citations to date
0
Altmetric
Articles

Scenedesmus obliquus in poultry wastewater bioremediation

, , ORCID Icon &
Pages 3735-3744 | Received 20 Feb 2018, Accepted 03 Jun 2018, Published online: 18 Jun 2018

References

  • Roy P, Orikasa T, Thammawong M, et al. Life cycle of meats: an opportunity to abate the greenhouse gas emission from meat industry in Japan. J Environ Manage. 2012;93:218–224. doi: 10.1016/j.jenvman.2011.09.017
  • FAO. Livestock long shadow: environmental issues and options. Rome: Food and Agriculture Organization of the United Nations; 2006.
  • Magdelaine P, Spiess MP, Valceschini E. Poultry meat consumption trends in Europe. World Poultry Sci J. 2008;64:53–64. doi: 10.1017/S0043933907001717
  • González-García S, Gomez-Fernández Z, Dias AC, et al. Life cycle assessment of broiler chicken production: a Portuguese case study. J Clean Prod. 2014;74:125–134. doi: 10.1016/j.jclepro.2014.03.067
  • Bustillo-Lecompte CF, Mehrvar M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. J Environ Manag. 2015;161:287–302. doi: 10.1016/j.jenvman.2015.07.008
  • Jayathilakan K, Sultana K, Radhakrishna K, et al. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol. 2012;49:278–293. doi: 10.1007/s13197-011-0290-7
  • Rawat I, Gupta SK, Shriwastav A, et al. Microalgae applications in wastewater treatment. In: Bux, F, Chisti, Y, editors. Algal biotechnology: products and processes. Springer International Publishing AG Cham; 2016. p. 249–268.
  • Rosso D, Larson LE, Stenstrom MK. Aeration of large-scale municipal wastewater treatment plants: state of the art. Water Sci Technol. 2008;57:973–978. doi: 10.2166/wst.2008.218
  • Batista AP, Ambrosano L, Graça S, et al. Combining urban wastewater treatment with biohydrogen production – An integrated microalgae-based approach. Bioresour Technol. 2015;184:230–235. doi: 10.1016/j.biortech.2014.10.064
  • Ferreira A, Ribeiro B, Marques PASS, et al. Scenedesmus obliquus mediated brewery wastewater remediation and CO2 biofixation for green energy purposes. J Clean Prod. 2017;165:1316–1327. doi: 10.1016/j.jclepro.2017.07.232
  • Ferreira A, Marques PASS, Ribeiro B, et al. Combining biotechnology with circular bioeconomy: from poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Environ Res. 2018;164:32–38. doi: 10.1016/j.envres.2018.02.007
  • Posadas E, Serejo ML, Blanco S, et al. Minimization of biomethane oxygen concentration during biogas upgrading in algal-bacterial photobioreactors. Algal Res. 2015;12:221–229. doi: 10.1016/j.algal.2015.09.002
  • Gouveia L, Graça S, Sousa C, et al. Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Res. 2016;16:167–176. doi: 10.1016/j.algal.2016.03.010
  • Posadas E, Bochon S, Coca M, et al. Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. J Appl Phycol. 2014;26(6):2335–2345. doi: 10.1007/s10811-014-0263-0
  • Sharda AK, Sharma MP, Kumar S. Performance evaluation of brewery waste water treatment plant. Int J Eng Pract Res. 2013;2(3):105–111.
  • Mata T, Melo A, Meireles S, et al. Potential of microalgae Scenedesmus obliquus grown in Brewery wastewater for biodiesel production. Chem Eng Trans. 2013;32:901–906.
  • Wilkie A, Mulbry W. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol. 2002;84(1):81–91. doi: 10.1016/S0960-8524(02)00003-2
  • Shi J, Pandey P, Franz A, et al. Chlorella vulgaris production enhancement with supplementation of synthetic medium in dairy manure wastewater. AMB Express. 2016;6:15–24. doi: 10.1186/s13568-016-0184-1
  • de Godos I, Vargas V, Blanco S, et al. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol. 2010;101(14):5150–5158. doi: 10.1016/j.biortech.2010.02.010
  • Singh M, Reynolds DL, Das KC. Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour Technol. 2011;102(23):10841–10848. doi: 10.1016/j.biortech.2011.09.037
  • Markou G. Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: optimization of nutrient removal and biomass production. Bioresour Technol. 2015;193:35–41. doi: 10.1016/j.biortech.2015.06.071
  • Wang M, Wu Y, Li B, et al. Pretreatment of poultry manure anaerobic digested effluents by electrolysis, centrifugation and autoclaving process for Chlorella vulgaris growth and pollutants removal. Env Technol. 2015;36:837–843. doi: 10.1080/09593330.2014.963695
  • Wu Y, Wang M, Cao W, et al. Optimization of Chlorella pyrenoidosa Y3 biomass production in poultry waste anaerobic-digested effluents using a response surface methodology. Desalinat Water Treat. 2016;57:8711–8719. doi: 10.1080/19443994.2015.1025850
  • Brennan L, Owende P. Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev. 2010;14(2):557–577. doi: 10.1016/j.rser.2009.10.009
  • Schulze PSC, Barreira LA, Pereira HGC, et al. Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol. 2014;32:422–430. doi: 10.1016/j.tibtech.2014.06.001
  • Gu Y, Narendran N, Dong T, et al. Spectral and luminous efficacy change of high-power LEDs under different dimming methods. Sixth international conference of solid state lighting, Proceedings of SPIE 6337, 63370J; 2006.
  • Beczkowski S, Munk-Nielsen S. LED spectral and power characteristics under hybrid PWM/AM dimming strategy. Energy conversion congress and exposition (ECCE). IEEE; 2010.
  • Das P, Lei W, Aziz SS, et al. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour Technol. 2011;102:3883–3887. doi: 10.1016/j.biortech.2010.11.102
  • Fu W, Guðmundsson Ó, Paglia G, et al. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biot. 2013;97:2395–2403. doi: 10.1007/s00253-012-4502-5
  • Abiusi F, Sampietro G, Marturano G, et al. Growth, photosynthetic efficiency, and biochemical composition of Tetraselmis suecica F&M-M33 grown with LEDs of different colors. Biotechnol Bioeng. 2013;111:956–964. doi: 10.1002/bit.25014
  • Vonshak A. Laboratory techniques for the cultivation of microalgae. In: Richmond A, editor. Handbook of microalgal mass culture. Boca Raton: CRC Press; 1986. p. 117–143.
  • Assunção J, Batista AP, Manoel J, et al. CO2 utilization in the production of biomass and biocompounds by three different microalgae. Eng Life Sci. 2017;17:1126–1135. doi: 10.1002/elsc.201700075
  • Decree-Law n.o 236/98 of the Portuguese Ministry of the Environment of 1 August establishing Water Quality Standards. Diário da República, 3676–3722. 1ª Série.
  • APHA. Standard methods for the examination of water and wastewater. 21st ed. American Public Health Association/American Water Works Association/Water Environment Federation; 2005.
  • Hoebler C, Barry JL, David A, et al. Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas-liquid chromatography. J Agr Food Chem. 1989;37(2):360–367. doi: 10.1021/jf00086a020
  • Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related compounds. Anal Chem. 1956;28(3):350–356. doi: 10.1021/ac60111a017
  • EN ISO 12966-2. Animal and vegetable fats and oils – Gas chromatography of fatty acid methyl esters – Part 2: Preparation of methyl esters of fatty acids; 2011.
  • EN 14103. Fat and oil derivatives – Fatty Acid Methyl Esters (FAME) – Determination of ester and linolenic acid methyl ester contents; 2003.
  • EN 16300. Automotive fuels – Determination of iodine value in fatty acid methyl esters (FAME) – Calculation method from gas chromatographic data; 2003.
  • Ferreira DF. SISVAR: a computer statistical analysis system. Ciênc Agrotec. 2011;35:1039–1042. doi: 10.1590/S1413-70542011000600001
  • Bradford SA, Segal E, Zheng W, et al. Reuse of concentrated animal feeding operation wastewater on agricultural lands. J Environ Qual. 2008;37(5):97–115.
  • Lincoln EP, Wilkie AC, French BT. Cyanobacterial process for renovating dairy wastewater. Biomass Bioenerg. 1996;10(1):63–68. doi: 10.1016/0961-9534(95)00055-0
  • Kim TH, Lee Y, Han SH, et al. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour Technol. 2013;130:75–80. doi: 10.1016/j.biortech.2012.11.134
  • Yan C, Zheng Z. Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga Chlorella sp. Appl Energ. 2014;113:1008–1014. doi: 10.1016/j.apenergy.2013.07.012
  • Gupta S K, Ansari FA, Shriwastav A, et al. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Clean Prod. 2016;115:255–264. doi: 10.1016/j.jclepro.2015.12.040
  • Ruiz J, Arbiba Z, Álvarez-Díaza PD, et al. Influence of light presence and biomass concentration on nutrient kinetic removal from urban wastewater by Scenedesmus obliquus. J Biotechol. 2014;178:32–37. doi: 10.1016/j.jbiotec.2014.03.001
  • Martinez ME, Sánchez S, Jiménez JM, et al. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol. 2000;73(3):263–272. doi: 10.1016/S0960-8524(99)00121-2
  • Makarevičienė V, Andrulevičiūtė V, Skorupskaitė V, et al. Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potentional biofuel feedstock. Environ Res Eng Manage . 2011;3(57):21–27.
  • Wang L, Min M, Li Y, et al. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol. 2010;162:1174–1186. doi: 10.1007/s12010-009-8866-7
  • Mandal S, Mallick N. Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Appl Environ Microbiol. 2011;77(1):374–377. doi: 10.1128/AEM.01205-10
  • Miranda JR, Passarinho PC, Gouveia L. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol. 2012;96:555–564. doi: 10.1007/s00253-012-4338-z
  • Chng LM, Chan DJC, Lee KT. Sustainable production of bioethanol using lipid-extracted biomass from Scenedesmus dimorphus. J Clean Prod. 2016;130:68–73. doi: 10.1016/j.jclepro.2016.02.016
  • EN 14214. Automotive fuels – Fatty acid methyl esters (FAME) for biodiesel engines – Requirements and test methods. 2012.
  • Ra CH, Kang CH, Jung JH, et al. Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresour Technol. 2016;212:254–261. doi: 10.1016/j.biortech.2016.04.059
  • Teo CL, Atta M, Bukharia A, et al. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresour Technol. 2014;162:38–44. doi: 10.1016/j.biortech.2014.03.113
  • Severes A, Hegde S, Souza LD, et al. Use of light emitting diodes (LEDs) for enhanced lipid production in micro-algae based biofuels. J Photochem Photobiol B: Biology. 2017;170:235–240. doi: 10.1016/j.jphotobiol.2017.04.023
  • Ferreira, A. (2016). CO2-supplemented brewery wastewater treatment by microalgae and biomass upgrading for bioenergy production. Master thesis on Biological Engineering, IST/Lisbon University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.