255
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Use of GreenZyme® for remediation of porous media polluted with jet fuel JP-5

&
Pages 277-286 | Received 11 Feb 2018, Accepted 26 Jun 2018, Published online: 17 Jul 2018

References

  • Mackay D, Shiu WY, Maijanen A, et al. Dissolution of non-aqueous phase liquids in groundwater. J Contam Hydrol. 1991;8(1):23–42. doi: 10.1016/0169-7722(91)90007-N
  • Anderson MR, Johnson RL, Pankow JF. Dissolution of dense chlorinated solvents into ground water: 1. dissolution from a well-defined residual source. Ground Water. 1992;30(2):250–256. doi: 10.1111/j.1745-6584.1992.tb01797.x
  • Chrysikopoulos CV, Voudrias EA, Fyrillas MM. Modeling of contaminant transport resulting from dissolution of nonaqueous phase liquid pools in saturated porous media. Transp Porous Media. 1994;16(2):125–145. doi: 10.1007/BF00617548
  • Chrysikopoulos CV, Hsuan P-Y, Fyrillas MM, et al. Mass transfer coefficient and concentration boundary layer thickness for a dissolving NAPL pool in porous media. J Hazard Mater. 2003;97:245–255. doi: 10.1016/S0304-3894(02)00264-9
  • Chrysikopoulos CV, Kim T-J. Local mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated porous media. Transp Porous Media. 2000;38(1/2):167–187. doi: 10.1023/A:1006655908240
  • Powers SE, Abriola LM, Weber WJ. An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: transient mass transfer rates. Water Resour Res. 1994;30(2):321–332. doi: 10.1029/93WR02923
  • Illangasekare TH, Ramsey JL, Jensen KH, et al. Experimental study of movement and distribution of dense organic contaminants in heterogeneous aquifer. J Contam Hydrol. 1995;20:1–25. doi: 10.1016/0169-7722(95)00045-W
  • Bao WJ, Vogler ET, Chrysikopoulos CV. Nonaqueous liquid pool dissolution in three-dimensional heterogeneous subsurface formations. Environ Geol. 2003;43:968–977. doi: 10.1007/s00254-002-0721-x
  • Zhao W, Ioannidis MA. Pore network simulation of the dissolution of a single-component wetting nonaqueous phase liquid. Water Resour Res. 2003;39(10):1291. doi: 10.1029/2002WR001861
  • Pumphrey KM, Chrysikopoulos CV. Non-aqueous phase liquid drop formation within a water saturated fracture. Colloids Surf A. 2004;240:199–209. doi: 10.1016/j.colsurfa.2004.03.016
  • Lee KY, Chrysikopoulos CV. Numerical modeling of three-dimensional contaminant migration from dissolution of multicomponent NAPL pools in saturated porous media. Environ Geol. 1995;26(3):157–165. doi: 10.1007/BF00768737
  • Lee KY, Chrysikopoulos CV. Dissolution of a well-defined trichloroethylene pool in saturated porous media: experimental results and model simulations. Water Res. 2002;36:3911–3918. doi: 10.1016/S0043-1354(02)00097-0
  • Lee KY, Chrysikopoulos CV. Dissolution of a multicomponent DNAPL pool in an experimental aquifer. J Hazard Mater. 2006;128:218–226. doi: 10.1016/j.jhazmat.2005.08.005
  • Anaoglu B, Scheytt T, Copty NK. Impact of NAPL architecture on interphase mas transfer: a pore network study. Adv Water Resour. 2016;95:138–151. doi: 10.1016/j.advwatres.2015.11.012
  • Mobile M, Widdowson M, Stewart L, et al. In-situ determination of field-scale NAPL mass transfer coefficients: performance, simulation and analysis. J Contam Hydrol. 2016;187:31–46. doi: 10.1016/j.jconhyd.2016.01.010
  • Teramoto EH, Chang HK, Chang F. Field data and numerical simulation of btex concentration trends under water table fluctuations: example of a jet fuel-contaminated site in Brazil. J Contam Hydrol. 2017;198:37–47. doi: 10.1016/j.jconhyd.2017.01.002
  • Geller JT, Hunt JR. Mass transfer from nonaqueous phase organic liquids in water-saturated porous media. Water Resour Res. 1993;29(4):833–845. doi: 10.1029/92WR02581
  • Chrysikopoulos CV, Lee KY, Harmon TC. Dissolution of a well-defined trichloroethylene pool in saturated porous media: experimental design and aquifer characterization. Water Resour Res. 2000;36(7):1687–1696. doi: 10.1029/2000WR900082
  • Imhoff PT, Gleyzer SN, McBride JF, et al. Cosolvent enhanced remediation of residual reuse nonaqueous phase liquids: experimental investigation. Environ Sci Technol. 1995;29(8):1966–1976. doi: 10.1021/es00008a014
  • Imhoff PT, Frizzell A, Miller CT. Evaluation of thermal effects on the dissolution of a nonaqueous phase liquid in porous-media. Environ Sci Technol. 1997;31(6):1615–1622. doi: 10.1021/es960292x
  • Khachikian C, Harmon TC. Nonaqueous phase liquid dissolution in porous media: current state of knowledge and research needs. Transp Porous Media. 2000;38(1/2):3–28. doi: 10.1023/A:1006667318234
  • Nocentini M, Pinelli D, Fava F. Bioremediation of a soil contaminated by hydrocarbon mixtures: the residual concentration problem. Chemosphere. 2000;41:1115–1123. doi: 10.1016/S0045-6535(00)00057-6
  • Saba T, Illangasekare TH, Ewing J. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field. J Contam Hydrol. 2001;51:63–82. doi: 10.1016/S0169-7722(01)00122-X
  • Hofstee C, Ziegler CG, Trotschler O, et al. Removal of DNAPL contamination from the saturated zone by the combined effect of vertical upward flushing and density reduction. J Contam Hydrol. 2003;67:61–78. doi: 10.1016/S0169-7722(03)00088-3
  • Gallego JLR, Sierra C, Permanyer A, et al. Full-scale remediation of jet fuel-contaminated soil: assessment of biodegradation, volatilization, and bioavailability. Water Air Soil Pollution. 2011;217:197–211. doi: 10.1007/s11270-010-0579-6
  • Javanbakht G, Arshadi M, Qin T, et al. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media. Adv Water Resour. 2017;105:173–187. doi: 10.1016/j.advwatres.2017.05.006
  • Reddi LN, Menon S, Plant A. Pore-scale investigations on vibratory mobilization of LNAPL ganglia. J Hazard Mater. 1998;62:211–230. doi: 10.1016/S0304-3894(98)00164-2
  • Roberts PM, Sharma A, Uddameri V, et al. Enhanced DNAPL transport in a sand core during dynamic stress simulation. Environ Eng Sci. 2001;18(2):67–67. doi: 10.1089/10928750151132230
  • Chrysikopoulos CV, Vogler ET. Acoustically enhanced mulitcomponent NAPL ganglia dissolution in water saturated packed columns. Environ Sci Technol. 2004;38(10):2940–2945. doi: 10.1021/es034665n
  • Chrysikopoulos CV, Vogler ET. Acoustically enhanced ganglia dissolution and mobilization in a monolayer of glass beads. Transp Porous Media. 2006;64:103–121. doi: 10.1007/s11242-005-1525-8
  • Vogler ET, Chrysikopoulos CV. An experimental study of acoustically enhanced NAPL dissolution in porous media. AIChE J. 2004;50(12):3271–3280. doi: 10.1002/aic.10221
  • Bettahar M, Ducreux J, Schafer G, et al. Surfactant enhanced in situ remediation of LNAPL contaminated aquifers: large scale studies on a controlled experimental site. Transp Porous Media. 1999;37(3):255–276. doi: 10.1023/A:1006634728321
  • CPC. Chevron products company, aviation fuels, technical review; 2007. 90 pp.
  • Morrison RT, Boyd RN. Organic chemistry. 3rd ed. Boston (MA): Allyn and Bacon, Inc.; 1976. 1258 pp.
  • Syngouna VI, Chrysikopoulos CV. Cotransport of clay colloids and viruses in water saturated porous media. Colloids Surf A. 2013;416:56–65. doi: 10.1016/j.colsurfa.2012.10.018
  • Thomas JM, Chrysikopoulos CV. A new method for in situ concentration measurements in packed-column transport experiments. Chem Eng Sci. 2010;65:4285–4292. doi: 10.1016/j.ces.2010.04.014
  • Chrysikopoulos CV, Plega CC, Katzourakis VE. Non-invasive in situ concentration determination of fluorescent or color tracers and pollutants in a glass pore network model. J Hazard Mater. 2011;198:299–306. doi: 10.1016/j.jhazmat.2011.10.042
  • MathWorks. Image processing toolbox for use with Matlab, user’s guide. Natick (MA): The MathWorks, Inc.; 2008.
  • National Research Council. Permissible exposure levels for selected military fuel vapors. Washington (DC): The National Academies Press; 1996.
  • Copeland RA. Enzymes: a practical introduction to structure, mechanism, and data analysis. 2nd ed. New York: Wiley; 2000.
  • Khusainova A, Nielsen SM, Pedersen HH, et al. Study of wettability of calcite surfaces using oil-brine-enzyme systems for enhanced oil recovery applications. J Pet Sci Eng. 2015;127:53–64. doi: 10.1016/j.petrol.2014.12.014
  • Patel J, Borgohain S, Kumar M, et al. Recent developments in microbial enhanced oil recovery. Renewable Sustainable Energy Rev. 2015;52:1539–1558. doi: 10.1016/j.rser.2015.07.135
  • Zhong L, Mayer AS, Pope GA. The effects of surfactant formulation on nonequilibrium NAPL solubilization. J Contam Hydrol. 2003;60:55–75. doi: 10.1016/S0169-7722(02)00063-3
  • Cheng Z, Gao B, Xu H, et al. Effects of surface active agents on NAPL migration and distribution in saturated porous media. Sci Total Environ. 2016;571:1147–1154. doi: 10.1016/j.scitotenv.2016.07.109
  • Sabatini DA, Knox RC, Harwell JH. Surfactant-enhanced DNAPL remediation: surfactant selection, hydraulic efficiency, and economic factors. Environmental Research Brief, US Environmental Protection Agency, EPA/600/S-96/002, 1996.
  • Mulligan CN, Yong RN, Gibbs BF. Surfactant-enhanced remediation of contaminanted soil: a review. Eng Geol. 2001;60:371–380. doi: 10.1016/S0013-7952(00)00117-4
  • Ahn D, Choi J-K, Kim H. Enhanced removal of NAPL constituents from aquifer during surfactant flushing with aqueous hydraulic barriers of high viscosity. J Environ Sci Health A. 2017;52(7):590–597. doi: 10.1080/10934529.2017.1293992
  • Tuck DM, Iversen GM, Pirkle WA. Organic dye effects on dense nonaqueous phase liquids (DNAPL) entry pressure in water saturated porous media. Water Resour Res. 2003;39(8):1207. doi: 10.1029/2001WR001000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.