399
Views
14
CrossRef citations to date
0
Altmetric
Articles

Treatment of tequila vinasse and elimination of phenol by coagulation–flocculation process coupled with heterogeneous photocatalysis using titanium dioxide nanoparticles

, , , , , & show all
Pages 1023-1033 | Received 08 Mar 2018, Accepted 28 Aug 2018, Published online: 19 Sep 2018

References

  • Cedeño M. Tequila production. Crit Rev Biotechnol. 1995;15:1–11. doi: 10.3109/07388559509150529
  • Colin VL, Cortes AAJ, Aparicio JD, et al. Potential application of a bioemulsifier-producing actinobacterium for treatment of vinasse. Chemosphere. 2016;144:842–847. doi: 10.1016/j.chemosphere.2015.09.064
  • López A, Contreras SM. Ciencia y tecnología, Guadalajara, Jalisco, Capítulo 8: Tratamiento de efluentes y aprovechamiento de residuos, segunda edición Grupo Promueve, Guadalajara. Jalisco. 2015;2:343–378.
  • Padilha de Souza R, Ferrari AM, Pezoti O, et al. Photodegradation of sugarcane vinasse: evaluation of the effect of vinasse pre-treatment and the crystalline phase of TiO2. Acta Sci Technol. 2016;38(2):217–226. doi: 10.4025/actascitechnol.v38i2.27440
  • Santana V, Fernandes NRC. Photocatalytic degradation of the vinasse under solar radiation. Catal Today. 2008;133-135:606–610. doi: 10.1016/j.cattod.2007.12.131
  • Moran RG, Sanchez AL, Rodriguez J, et al. Utilization of vinasses as soil amendment: consequences and perspectives. Springer Plus. 2016;5:1–11. doi: 10.1186/s40064-015-1659-2
  • Ferral H, Bustillos LG, Mendez H, et al. Sequential treatment of tequila industry vinasses by biopolymer based coagulation/flocculation and catalytic ozonation. Ozone Sci Eng. 2016;38:279–290. doi: 10.1080/01919512.2016.1158635
  • Harada H, Uemera S, Cheng A, et al. Anaerobic treatment of a recalcitrant distillery wastewater by a thermophilic UASB reactor. Bioresour Technol. 1996;55:215–221. doi: 10.1016/0960-8524(96)00003-X
  • Alonso V, Martín A, Borja R. Anaerobic digestion of wastewater produced in the manufacture of cellulosic pulp from wheat straw in immobilized cell bioreactors. Resour Conserv Recyl. 1995;13:129–138. doi: 10.1016/0921-3449(94)00042-4
  • Zayas T, Salgado VRVRL, Meraz M, et al. Applicability of coagulation/flocculation and electrochemical processes to the purification of biologically treated vinasse effluent. Sep Purif Technol. 2007;57:270–276. doi: 10.1016/j.seppur.2007.04.019
  • Riga ACK, Soutsasb K, Karayannisa V, et al. Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes: comparison of H2O2/UV, Fenton, UV/Fenton, TiO2/UV and TiO2/UV/H2O2 proceses. Desalination. 2007;211:72–86. doi: 10.1016/j.desal.2006.04.082
  • Navarro P, Sarasa J, Sierra D, et al. Degradation of wine industry wastewaters by photocatalytic advanced oxidation. Water Sci Technol. 2005;51:113–120. doi: 10.2166/wst.2005.0014
  • Zhang H, Liu G, Shi L, et al. Engineering coordination polymers for photocatalysis. Nano Energy. 2016;22:149–168. doi: 10.1016/j.nanoen.2016.01.029
  • Herrmann JM, Guillard C, Pichat P. Heterogeneous photocatalysis: an emerging technology for water treatment. Catal Today. 1993;17:7–20. doi: 10.1016/0920-5861(93)80003-J
  • Matos J, Miranda C, Poon PS, et al. Nanostructured hybrid TiO2-C for the photocatalytic conversion of phenol. Sol Energy. 2016;134:64–71. doi: 10.1016/j.solener.2016.04.043
  • Padilha de Souza R, Girardi F, Sluzarski V, et al. Vinasse treatment using a vegetable-tannin coagulant and photocatalysis. Acta Sci Technol. 2013;35(1):89–95.
  • Vineetha MN, Matheswaran M, Sheeba KN. Photocatalytic colour and COD removal in the distillery effluent by solar radiation. Sol Energy. 2013;91:368–373. doi: 10.1016/j.solener.2012.09.013
  • Sánchez M, Guirado R, Rincón ME. Desarrollo y caracterización de un composito basado en dióxido de titanio y nanotubos de carbono para su aplicación como sensor de gases tóxicos (tesis de maestría). Temixco, Morelos: Centro de Investigación en Energía de la Universidad Autónoma de México; 2006.
  • Sanchez M, Guirado R, Rincón ME. Multi walled carbon nanotubes embedded in sol-gel derived TiO2 matrices and their use as room temperature gas sensors. J Mater Sci: Mater Electron. 2007;18:1131–1136.
  • https://www.crt.org.mx/index.php?lang=en
  • Selmer E, Ratnaweera HC, Pehrson R. A novel treatment process for dairy wastewater with chitosan produced from shrimp shell waste. Wat Sci Technol. 1996;34(11):33–40. doi: 10.2166/wst.1996.0260
  • Lalov IG, Guerginov II, Krysteva MA, et al. Treatment of waste water from distilleries with chitosan. Wat Res. 2000;34(5):1503–1506. doi: 10.1016/S0043-1354(99)00291-2
  • American Public Health Association; American Water Works Association; Water Environment Federation. Standard methods for the examination of water and wastewater, 21st ed. Washington (DC): American Public Health Association; 2005.
  • Wei TY, Wan CC. Heterogeneous photocatalytic oxidation of phenol with titanium dioxide powders. Ind Eng Chem Res. 1991;30(6):1293–1300. doi: 10.1021/ie00054a033
  • Mancilla-Margalli NA, López MG. Generation of Maillard compounds from inulin during the termal processing of Agave tequilana Weber Var. azul. J Agric Food Chem. 2002;50(4):806–812. doi: 10.1021/jf0110295
  • Zhang H, Baffled JF. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem B. 2000;104:3481–3487. doi: 10.1021/jp000499j
  • Hernández JM, García LA, Zeifert BH. Síntesis y caracterización de nanopartículas de N-TiO2-Anatasa. Superficies y Vacío. 2008;21:1–5.
  • Bizarro M, Tapia MA, Ojeda ML, et al. Photocatalytic activity enhancement of TiO2 films by micro and nano-structured surface modification. Appl Surf Sci. 2009;255:6274–6278. doi: 10.1016/j.apsusc.2009.01.094
  • Giuliante A, Marrero S, Carrillo V, et al. Physico-chemical properties of La/TiO2 systems employed for 2-nitrophenol photodegradation using visible light from a solar simulator. Rev Fac Ing UCV. 2011;26:147–154.
  • Tayade RJ, Surolia PK, Kulkarni RG, et al. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater. 2007;8:455–462. doi: 10.1016/j.stam.2007.05.006
  • Bacsa RR, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystallinetitania during the degradation of p-coumaric acid. Appl Catal B Environ. 1998;16:19–29. doi: 10.1016/S0926-3373(97)00058-1
  • Hou H, Shang M, Wang L, et al. Efficient photocatalytic activities of TiO2 hollow fibers with mixed phases and mesoporous walls. Sci Rep. 2015;5:1–5.
  • Ruu W, Lintang HO, Shamsuddin M, et al. High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles. IOP Conf Series: Mater Sci Eng. 2016;107:1–8.
  • Capula SI. Síntesis, caracterización y evaluación de la actividad catalítica de nanopartículas Pt-Ir sobre nanotubos de titania. Tesis. 2007: 1–78.
  • OMNIC spectra software. ThermoFisher Scientific.
  • Zhang YX, Li GH, Jin YX, et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem Phys Lett. 2002;365:300–304. doi: 10.1016/S0009-2614(02)01499-9
  • Henderson MAA. Surface science perspective on TiO2 photocatalysis. Surf Sci Rep. 2011;66:185–297. doi: 10.1016/j.surfrep.2011.01.001
  • Lotero ML. Transformaciones del carbono orgánico presente en la vinaza aplicada a un suelo vertic haplustoll de Valle de Río Cauca [tesis doctoral]. Palmira, Colombia: Universidad Nacional de Colombia; 2012.
  • Ortiz M, Solis E. Procedimiento, aditivos y formulación para el tratamiento de vinazas. Search International and National Patent Collections. 2012.
  • Reynolds TM. Chemistry of non enzymic browing. I. The reaction between aldoses and amines. Adv Food Res. 1968;12:1–52.
  • http://depa.fquim.unam.mx/amyd/archivero/07LareacciondeMaillard_20547.pdf
  • Tamanna N, Mahmood N. Food processing and maillard reaction products: effect on human health and nutrition. Int J Food Sci. 2015;2015:1–6. doi: 10.1155/2015/526762
  • Giratá LM, Guevara JE, Machuca F. Exploring study on the vinasse treatment by solar photocatalysis with titanium dioxide in a falling film reactor. Rev ION. 2011;24:35–41.
  • Konstantinou IK, Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ. 2004;49:1–14. doi: 10.1016/j.apcatb.2003.11.010
  • Contreras U, Barbosa O, Ramos G, et al. Identificación y discriminación de tequilas reposados in situ para la protección de marca. Nova Sci. 2009;1:22–32. doi: 10.21640/ns.v1i2.230
  • Picard DI, Montagnac G, Oger P. In situ monitoring by quantitative Raman spectroscopy of alcoholic fermentation by Saccharomyces cerevisiae under high pressure. Extremophiles. 2009;11:445–452. doi: 10.1007/s00792-006-0054-x
  • Socrates G. Infrared and Raman characteristic group frequencies: tables and charts. Jhon Wiley & Sons; 2001.
  • Limem S, Maazaoui R, Mani KD, et al. Preliminary identification of citrullus colocynthis from Togo by FT-IR and Raman spectroscopy. Int J Adv Res (Indore). 2015;3:354–360.
  • Schulz H, Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc. 2007;43:13–25. doi: 10.1016/j.vibspec.2006.06.001
  • Tyrode E, Magnus C, Baldelli S, et al. A vibrational sum frequency spectroscopy study of the liquid-gas interface of acetic acid-water mixtures. 2. Orientationanalysis. J Phys Chem B. 2005;109:329–341. doi: 10.1021/jp047337y
  • Frausto C, Medina C, Sato R, et al. Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis. Spectrochim Acta A. 2005;61:2657–2662. doi: 10.1016/j.saa.2004.10.008
  • Grabowska E, Reszczynska J, Zaleska A. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res. 2012;46:5453–5471. doi: 10.1016/j.watres.2012.07.048
  • Sobczyynski A, Duczmal L, Zmudzinski W. Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J Mol Catal A: Chem. 2004;213:225–230. doi: 10.1016/j.molcata.2003.12.006
  • Fan W, Qlan MC. Headspace solid phase microextraction and gas chromatography olfactometry dilution analysis of young and aged Chinese “Yanghe Daqu” liquors. J Agric Food Chem. 2005;53:7931–7938. doi: 10.1021/jf051011k
  • Dowd MK, Johansen SL, Cantarella L, et al. Low molecular weight organic composition of etanol stillage from sugarcane molasses, citrus waste, and sweet whey. J Agric Food Chem. 1994;42:283–288. doi: 10.1021/jf00038a011
  • Gallego CM. Influencia de la acidez volatile en el proceso de fermentación de la planta de alcohol del ingenio Risaralda, S.A. [tesis de grado]. Colombia: Universidad Tecnológica de Pereira. 2007.
  • Ralph J, Hatfield RD. Pyrolisis GC-MS characterization of forage materials. J Agric Food Chem. 1991;39:1426–1437. doi: 10.1021/jf00008a014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.