858
Views
33
CrossRef citations to date
0
Altmetric
Articles

Characteristics of biochars prepared by co-pyrolysis of sewage sludge and cotton stalk intended for use as soil amendments

, , , , & ORCID Icon
Pages 1347-1357 | Received 10 Apr 2018, Accepted 06 Oct 2018, Published online: 22 Oct 2018

References

  • Fang S, Yu Z, Lin Y, et al. A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives. Appl Therm Eng. 2017;111:292–300. doi: 10.1016/j.applthermaleng.2016.09.102
  • Liu S, Liu J, Zhao J, et al. Palygorskite changes heavy metal bioavailability and microbial functional diversity in sewage sludge composting. Environ Technol. 2015;36:2855–2862. doi: 10.1080/09593330.2015.1050071
  • Chen H, Zhai Y, Xu B, et al. Characterization of bio-oil and biochar from high-temperature pyrolysis of sewage sludge. Environ Technol. 2015;36:470–478. doi: 10.1080/09593330.2014.952343
  • Wang B, Gao B, Fang J. Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol. 2018;47:2158–2207. doi: 10.1080/10643389.2017.1418580
  • Suman S, Panwar DS, Gautam S. Surface morphology properties of biochars obtained from different biomass waste. Energy Sources Part A. 2017;39:1007–1012. doi: 10.1080/15567036.2017.1283553
  • Zhou F, Wang H, Fang S, et al. Pb (II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: role of humic acids. Environ Sci Pollut Res. 2015;22:16031–16039. doi: 10.1007/s11356-015-4818-7
  • Xu H, Zhang X, Zhang Y. Modification of biochar by Fe2O3 for the removal of pyridine and quinoline. Environ Technol. 2018;39:1470–1480. doi: 10.1080/09593330.2017.1332103
  • Vilvanathan S, Shanthakumar S. Ni2+ and Co2+ adsorption using Tectona grandis biochar: kinetics, equilibrium and desorption studies. Environ Technol. 2018;39:464–478. doi: 10.1080/09593330.2017.1304454
  • Rizwan MS, Imtiaz M, Chhajro MA, et al. Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of Pb and Cu in contaminated soil. Environ Technol. 2016;37:2679–2686. doi: 10.1080/09593330.2016.1158870
  • Nguyen LH, Vu TM, Le TT, et al. Ammonium removal from aqueous solutions by fixed-bed column using corncob-based modified biochar. Environ Technol. 2017;38:1–10. doi: 10.1080/09593330.2016.1181674
  • Dominguez A, Menendez JA, Inguanzo M, et al. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour Technol. 2006;97:1185–1193. doi: 10.1016/j.biortech.2005.05.011
  • Chen Z, Zhang J, Liu M, et al. Immobilization of metals in contaminated soil from e-waste recycling site by dairy-manure-derived biochar. Environ Technol. 2017;38:1–9. doi: 10.1080/09593330.2017.1278793
  • Huang Y-F, Shih C-H, Chiueh P-T, et al. Microwave co-pyrolysis of sewage sludge and rice straw. Energy. 2015;87:638–644. doi: 10.1016/j.energy.2015.05.039
  • Ruiz-Gomez N, Quispe V, Abrego J, et al. Co-pyrolysis of sewage sludge and manure. Waste Manag. 2017;59:211–221. doi: 10.1016/j.wasman.2016.11.013
  • Fan S, Tang J, Wang Y, et al. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism. J Mol Liq. 2016;220:432–441. doi: 10.1016/j.molliq.2016.04.107
  • Zhao Y, Ren Q, Na Y. Speciation transformation of arsenic during municipal sewage sludge incineration with cotton stalk as additive. Fuel. 2017;202:541–546. doi: 10.1016/j.fuel.2017.04.074
  • Silverstein RA, Chen Y, Sharma-Shivappa RR, et al. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol. 2007;98:3000–3011. doi: 10.1016/j.biortech.2006.10.022
  • Deng H, Li G, Yang H, et al. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem Eng J. 2010;163:373–381. doi: 10.1016/j.cej.2010.08.019
  • Zhao B, Xu X, Xu S, et al. Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride. Bioresour Technol. 2017;243:375–383. doi: 10.1016/j.biortech.2017.06.032
  • Lorentzen EML, Kingston HMS. Comparison of microwave-assisted and conventional leaching using EPA method 3050B. Anal Chem. 1996;68:4316–4320. doi: 10.1021/ac960553l
  • Saracoglu S, Soylak M, Eli L. Extractable trace metals content of dust from vehicle air filters as determined by sequential extraction and flame atomic absorption spectrometry. J AOAC Int. 2009;92:1196–1202. doi: 10.1093/jaoac/92.4.1196
  • Hakanson L. An ecological risk index for aquatic pollution control a sedimentological approach. Water Res. 1980;14:975–1001. doi: 10.1016/0043-1354(80)90143-8
  • Ding Z, Ma L, Jilili A, et al. Spatial variations and influence factor analysis of heavy metals in topsoil of bortala river basin northwest China. Ecol Environ Sci. 2017;26:939–948. Chinese.
  • Devi P, Saroha AK. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour Technol. 2014;162:308–315. doi: 10.1016/j.biortech.2014.03.093
  • Yuan H, Lu T, Huang H, et al. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge. J Anal Appl Pyrolysis. 2015;112:284–289. doi: 10.1016/j.jaap.2015.01.010
  • Chen M, Li XM, Yang Q, et al. Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China. J Hazard Mater. 2008;160:324–329. doi: 10.1016/j.jhazmat.2008.03.036
  • Rauret G. Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta. 1998;46:449–455. doi: 10.1016/S0039-9140(97)00406-2
  • Lu H, Zhang W, Wang S, et al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J Anal Appl Pyrolysis. 2013;102:137–143. doi: 10.1016/j.jaap.2013.03.004
  • Al-Wabel MI, Al-Omran A, El-Naggar AH, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol. 2013;131:374–379. doi: 10.1016/j.biortech.2012.12.165
  • Jin J, Wang M, Cao Y, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals. Bioresour Technol. 2017;228:218–226. doi: 10.1016/j.biortech.2016.12.103
  • Huang H, Yuan X, Zeng G, et al. Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge. Bioresour Technol. 2011;102:10346–10351. doi: 10.1016/j.biortech.2011.08.117
  • Atkinson CJ, Fitzgerald JD, Hipps NA. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. 2010;337:1–18. doi: 10.1007/s11104-010-0464-5
  • Wang K, Zheng Y, Zhu X, et al. Ex-situ catalytic pyrolysis of wastewater sewage sludge – a micro-pyrolysis study. Bioresour Technol. 2017;232:229–234. doi: 10.1016/j.biortech.2017.02.015
  • Huang H-J, Yang T, Lai F-Y, et al. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J Anal Appl Pyrolysis. 2017;125:61–68. doi: 10.1016/j.jaap.2017.04.018
  • Borchard N, Ladd B, Eschemann S, et al. Black carbon and soil properties at historical charcoal production sites in Germany. Geoderma. 2014;232–234:236–242. doi: 10.1016/j.geoderma.2014.05.007
  • Singh BP, Cowie AL, Smernik RJ. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol. 2012;46:11770–11778. doi: 10.1021/es302545b
  • Chen T, Zhang Y, Wang H, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour Technol. 2014;164:47–54. doi: 10.1016/j.biortech.2014.04.048
  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, et al. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 2011;159:3269–3282. doi: 10.1016/j.envpol.2011.07.023
  • Bansal RC, Goyal M. Activated carbon adsorption. Boca Raton (FL): CRC press; 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.