376
Views
11
CrossRef citations to date
0
Altmetric
Articles

Enhanced immobilization of mercury (II) from desulphurization wastewater by EDTA functionalized graphene oxide nanoparticles

ORCID Icon, , , , &
Pages 1366-1379 | Received 12 Aug 2018, Accepted 06 Oct 2018, Published online: 16 Oct 2018

References

  • Wu H, Sun JX, Qi DX, et al. Photocatalytic removal of elemental mercury from flue gas using multiwalled carbon nanotubes impregnated with titanium dioxide. Fuel. 2018;230:218–225. doi: 10.1016/j.fuel.2018.05.009
  • Cui L, Wang Y, Hu L, et al. Mechanism of Pb(II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. RSC Adv. 2015;13:9759–9770. doi: 10.1039/C4RA13009J
  • Wu D, Hu L, Wang Y, et al. EDTA modified beta-cyclodextrin/chitosan for rapid removal of Pb(II) and acid red from aqueous solution. J Colloid Interf Sci. 2018;523:56–64. doi: 10.1016/j.jcis.2018.03.080
  • Igberase E, Osifo P, Ofomaja A. Chromium (VI) ion adsorption by grafted cross-linked chitosan beads in aqueous solution – a mathematical and statistical modeling study. Environ Technol. 2017;38(24):3156–3166. doi: 10.1080/09593330.2017.1290152
  • Liu Z, Li L, Li Z, et al. Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Environ Technol. 2018;39(14):1814–1822. doi: 10.1080/09593330.2017.1340347
  • Wang Y, Hu L, Zhang G, et al. Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes. J Colloid Interf Sci. 2017;494:380–388. doi: 10.1016/j.jcis.2017.01.105
  • Beatty WL, Schroeder K, Beatty CLK. Mineralogical associations of mercury in FGD products. Energ Fuel. 2012;26(6):3399–3406. doi: 10.1021/ef300033u
  • Cheng CM, Hack P, Chu P, et al. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems. Energ Fuel. 2009;23:4805–4816. doi: 10.1021/ef900293u
  • Cordoba P, Font O, Izquierdo M, et al. Enrichment of inorganic trace pollutants in re-circulated water streams from a wet limestone flue gas desulphurisation system in two coal power plants. Fuel Process Technol. 2011;92:1764–1775. doi: 10.1016/j.fuproc.2011.04.025
  • Neves CV, Scheufele FB, Nardino AP, et al. Phenomenological modeling of reactive dye adsorption onto fish scales surface in the presence of electrolyte and surfactant mixtures. Environ Technol. 2018;39(19):2467–2483. doi: 10.1080/09593330.2017.1356876
  • Ahmaruzzaman M, Gupta VK. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res. 2011;50(24):13589–13613. doi: 10.1021/ie201477c
  • Cao S, Dong T, Xu G, et al. Cyclic filtration behavior of structured cattail fiber assembly for oils removal from wastewater. Environ Technol. 2018;39(14):1833–1840. doi: 10.1080/09593330.2017.1340349
  • Gupta VK, Jain R, Nayak A, et al. Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface. Mat Sci Eng C-Mater. 2011;31(5):1062–1067. doi: 10.1016/j.msec.2011.03.006
  • Gupta VK, Kumar R, Nayak A, et al. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interfac. 2013;193–194:24–34. doi: 10.1016/j.cis.2013.03.003
  • Gupta VK, Saleh TA. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ Sci Pollut R. 2013;20(5):2828–2843. doi: 10.1007/s11356-013-1524-1
  • Mohammadi N, Khani H, Gupta VK, et al. Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. J Colloid Interf Sci. 2011;362(2):457–462. doi: 10.1016/j.jcis.2011.06.067
  • Saravanan R, Gupta VK, Prakash T, et al. Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J Mol Liq. 2013;178:88–93. doi: 10.1016/j.molliq.2012.11.012
  • Wang Y, Yan T, Gao L, et al. Magnetic hydroxypropyl chitosan functionalized graphene oxide as adsorbent for the removal of lead ions from aqueous solution. Desalin Water Treat. 2014;57(9):3975–3984. doi: 10.1080/19443994.2014.989273
  • Gupta VK, Atar N, Yola ML, et al. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res. 2014;48:210–217. doi: 10.1016/j.watres.2013.09.027
  • Robati D, Mirza B, Rajabi M, et al. Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem Eng J. 2016;284:687–697. doi: 10.1016/j.cej.2015.08.131
  • Ren X, Zhang T, Wu D, et al. Increased electrocatalyzed performance through high content potassium doped graphene matrix and aptamer tri infinite amplification labels strategy: highly sensitive for matrix metalloproteinases-2 detection. Biosens Bioelectron. 2017;94:694–700. doi: 10.1016/j.bios.2017.03.064
  • He K, Chen G, Zeng G, et al. Enhanced removal performance for methylene blue by kaolin with graphene oxide modification. J Taiwan Inst Chem E. 2018;89:77–85. doi: 10.1016/j.jtice.2018.04.013
  • Liu CS, Jia R, Ye XJ, et al. Non-hexagonal symmetry-induced functional T graphene for the detection of carbon monoxide. J Chem Phys. 2013;139(3):034704. doi: 10.1063/1.4813528
  • Iqbal S, Yun JI. EDTA-functionalized mesoporous silica for the removal of corrosion products: adsorption studies and performance evaluation under gamma irradiation. Micropor Mesopor Mat. 2017;248:149–157. doi: 10.1016/j.micromeso.2017.04.028
  • Gupta VK, Nayak A, Agarwal S, et al. Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J Colloid Interf Sci. 2014;417:420–430. doi: 10.1016/j.jcis.2013.11.067
  • Khani H, Rofouei MK, Arab P, et al. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J Hazard Mater. 2010;183(1–3):402–409. doi: 10.1016/j.jhazmat.2010.07.039
  • Saleh TA, Gupta VK. Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interf Sci. 2011;362(2):337–344. doi: 10.1016/j.jcis.2011.06.081
  • Saleh TA, Gupta VK. Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interf Sci. 2012;371(1):101–106. doi: 10.1016/j.jcis.2011.12.038
  • Gupta VK, Nayak A, Agarwal S. Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res. 2015;20(1):1–18. doi: 10.4491/eer.2015.018
  • Saleh TA, Gupta VK. Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv Colloid Interfac. 2014;211:93–101. doi: 10.1016/j.cis.2014.06.006
  • Devaraj M, Saravanan R, Deivasigamani R, et al. Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J Mol Liq. 2016;221:930–941. doi: 10.1016/j.molliq.2016.06.028
  • Asfaram A, Ghaedi M, Agarwal S, et al. Removal of basic dye auramine-O by ZnS: Cu nanoparticles loaded on activated carbon optimization of parameters using response surface methodology with central composite design. Rsc Adv. 2015;5:18438–18450. doi: 10.1039/C4RA15637D
  • Saravanan R, Khan MM, Gupta VK, et al. Zno/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activities. RSC Adv. 2015;5:34645–34651. doi: 10.1039/C5RA02557E
  • Saravanan R, Joicy S, Gupta VK, et al. Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mat Sci Eng C-Mater. 2013;33(8):4725–4731. doi: 10.1016/j.msec.2013.07.034
  • Saravanan R, Karthikeyan N, Gupta VK, et al. Zno/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mat Sci Eng C-Mater. 2013;33(4):2235–2244. doi: 10.1016/j.msec.2013.01.046
  • Saravanan R, Karthikeyan S, Gupta VK, et al. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C Mater Biol Appl. 2013;33(1):91–98. doi: 10.1016/j.msec.2012.08.011
  • Saravanan R, Sacari E, Gracia F, et al. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq. 2016;221:1029–1033. doi: 10.1016/j.molliq.2016.06.074
  • Saravanan R, Mansoob Khan M, Gupta VK, et al. Zno/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interf Sci. 2015;452:126–133. doi: 10.1016/j.jcis.2015.04.035
  • Rajendran S, Khan MM, Gracia F, et al. Ce(3+)-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep. 2016;6:31641. doi: 10.1038/srep31641
  • Saravanan R, Thirumal E, Gupta VK, et al. The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol Liq. 2013;177:394–401. doi: 10.1016/j.molliq.2012.10.018
  • Rashid J, Barakat MA, Pettit SL, et al. InVO4/TiO2 composite for visible-light photocatalytic degradation of 2-chlorophenol in wastewater. Environ Technol. 2014;35(17-20):2153–2159. doi: 10.1080/09593330.2014.895051
  • Beduk F. Superparamagnetic nanomaterial Fe3O4-TiO2 for the removal of As(V) and As(III) from aqueous solutions. Environ Technol. 2016;37(14):1790–1801. doi: 10.1080/09593330.2015.1132777
  • Karthikeyan S, Gupta VK, Boopathy R, et al. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J Mol Liq. 2012;173:153–163. doi: 10.1016/j.molliq.2012.06.022
  • Saleh TA, Gupta VK. Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep Purif Technol. 2012;89:245–251. doi: 10.1016/j.seppur.2012.01.039
  • Madadrang CJ, Kim HY, Gao G, et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. Acs Appl Mater Inter. 2012;4(3):1186–1193. doi: 10.1021/am201645g
  • Lingamdinne LP, Koduru JR, Roh H, et al. Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy. 2016;165:90–96. doi: 10.1016/j.hydromet.2015.10.021
  • Song S-T, Saman N, Johari K, et al. Removal of Hg(II) from aqueous solution by adsorption using Raw and chemically modified rice straw As novel adsorbents. Ind Eng Chem Res. 2013;52(36):13092–13101. doi: 10.1021/ie400605a
  • Dharnaik AS, Ghosh PK. Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process. Environ Technol. 2014;35(17-20):2272–2279. doi: 10.1080/09593330.2014.902108
  • Tan P, Sun J, Hu Y, et al. Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J Hazard Mater. 2015;297:251–260. doi: 10.1016/j.jhazmat.2015.04.068
  • Khor SW, Lee YK, Abas MRB, et al. Application of chalcone-based dithiocarbamate derivative incorporated sol–gel for the removal of Hg (II) ion from water. J Sol-Gel Sci Techn. 2017;82(3):834–845. doi: 10.1007/s10971-017-4362-7
  • Wang Y, Shi L, Gao L, et al. The removal of lead ions from aqueous solution by using magnetic hydroxypropyl chitosan/oxidized multiwalled carbon nanotubes composites. J Colloid Interf Sci. 2015;451:7–14. doi: 10.1016/j.jcis.2015.03.048
  • Guo Y, Deng J, Zhu J, et al. Removal of mercury(ii) and methylene blue from a wastewater environment with magnetic graphene oxide: adsorption kinetics, isotherms and mechanism. RSC Adv. 2016;6:82523–82536. doi: 10.1039/C6RA14651A
  • He K, Chen G, Zeng G, et al. Stability, transport and ecosystem effects of graphene in water and soil environments. Nanoscale. 2017;9(17):5370–5388. doi: 10.1039/C6NR09931A
  • Krishna Kumar AS, Jiang SJ, Tseng WL. Facile synthesis and characterization of thiol-functionalized graphene oxide as effective adsorbent for Hg(II). J Environ Chem Eng. 2016;4(2):2052–2065. doi: 10.1016/j.jece.2016.03.034
  • Krishna Kumar AS, Kalidhasan S, Rajesh V, et al. Adsorptive demercuration by virtue an appealing interaction involving biopolymer cellulose and mercaptobenzothiazole. Ind Eng Chem Res. 2013;52:11838–11849. doi: 10.1021/ie400921p
  • Chen PH, Hsu CF, Tsai DD, et al. Adsorption of mercury from water by modified multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions. Environ Technol. 2014;35(13–16):1935–1944. doi: 10.1080/09593330.2014.886627
  • Fatehi MH, Shayegan J, Zabihi M, et al. Functionalized magnetic nanoparticles supported on activated carbon for adsorption of Pb(II) and Cr(VI) ions from saline solutions. J Enviro Chem Eng. 2017;5(2):1754–1762. doi: 10.1016/j.jece.2017.03.006
  • Inyinbor AA, Adekola FA, Olatunji GA. Liquid phase adsorptions of rhodamine B dye onto raw and chitosan supported mesoporous adsorbents: isotherms and kinetics studies. Appl Water Sci. 2016;7(5):2297–2307. doi: 10.1007/s13201-016-0405-4
  • Han Q, Wang R, Xing B, et al. Label-free photoelectrochemical aptasensor for tetracycline detection based on cerium doped CdS sensitized BiYWO6. Biosens Bioelectron. 2018;106:7–13. doi: 10.1016/j.bios.2018.01.051
  • Yang J, Zhang D, Jiang S, et al. Synthesis of Y-shaped poly (solketal acrylate)-containing block copolymers and study on the thermoresponsive behavior for micellar aggregates. J Colloid Interf Sci. 2010;352(2):405–414. doi: 10.1016/j.jcis.2010.09.014
  • Cui L, Wang Y, Gao L, et al. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem Eng J. 2015;281:1–10. doi: 10.1016/j.cej.2015.06.043
  • Zhao C, Ma L, You J, et al. EDTA- and amine-functionalized graphene oxide as sorbents for Ni(II) removal. Desalin Water Treat. 2015;57(19):8942–8951. doi: 10.1080/19443994.2015.1025438
  • Repo E, Warchol JK, Bhatnagar A, et al. Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials. J Colloid Interf Sci. 2011;358(1):261–267. doi: 10.1016/j.jcis.2011.02.059
  • Henriques B, Goncalves G, Emami N, et al. Optimized graphene oxide foam with enhanced performance and high selectivity for mercury removal from water. J Hazard Mater. 2016;301:453–461. doi: 10.1016/j.jhazmat.2015.09.028
  • Xiong YY, Li JQ, Gong LL, et al. Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution. J Solid State Chem. 2017;246:16–22. doi: 10.1016/j.jssc.2016.10.018
  • Abbas K, Znad H, Awual MR. A ligand anchored conjugate adsorbent for effective mercury(II) detection and removal from aqueous media. Chem Eng J. 2018;334:432–443. doi: 10.1016/j.cej.2017.10.054
  • Qu Z, Fang L, Chen D, et al. Effective and regenerable Ag/graphene adsorbent for Hg(II) removal from aqueous solution. Fuel. 2017;203:128–134. doi: 10.1016/j.fuel.2017.04.105
  • Liang L, Liu L, Jiang F, et al. Incorporation of In2S3 nanoparticles into a metal-organic framework for ultrafast removal of Hg from water. Inorg Chem. 2018;57(9):4891–4897. doi: 10.1021/acs.inorgchem.7b03076

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.