462
Views
24
CrossRef citations to date
0
Altmetric
Articles

Removal of ciprofloxacin from aqueous solution by rabbit manure biochar

, &
Pages 1380-1390 | Received 06 Jul 2018, Accepted 06 Oct 2018, Published online: 23 Oct 2018

References

  • Zhang QQ, Ying GG, Pan CG, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol. 2015;49(11): 6772–6782. doi: 10.1021/acs.est.5b00729
  • Diwan V, Tamhankar AJ, Khandal RK, et al. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health. 2010;10(1):414. doi: 10.1186/1471-2458-10-414
  • Lapworth DJ, Baran N, Stuart ME, et al. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut. 2012;163(4):287–303. doi: 10.1016/j.envpol.2011.12.034
  • Avella A, Delgado L, Gorner T, et al. Effect of cytostatic drug presence on extracellular polymeric substances formation in municipal wastewater treated by membrane bioreactor. Bioresour. Technol. 2010;101(2):518–526. doi: 10.1016/j.biortech.2009.08.057
  • De WB, Van LH, Demeestere K, et al. Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: effect of pH and H2O2, Chemosphere. 2010;78(9):1142–1147. doi: 10.1016/j.chemosphere.2009.12.026
  • Shi W, Yan Y, Xu Y. Microwave-assisted synthesis of nano-scale BiVO4 photocatalysts and their excellent visible-light-driven photocatalytic activity for the degradation of ciprofloxacin. Chem Eng J. 2013;s215–s216(2):740–746. doi: 10.1016/j.cej.2012.10.071
  • Girardi C, Greve J, Lamshöft M, et al. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J. Hazard. Mater. 2011;198(2):22–30. doi: 10.1016/j.jhazmat.2011.10.004
  • Gonzalez JA, Bafico JG, Villanueva ME, et al. Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material. Carbohydr Polym. 2018; 188:213–220. doi: 10.1016/j.carbpol.2018.02.021
  • Peng X, Hu F, Zhang T, et al. Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study. Bioresour. Technol. 2018;924–934. doi: 10.1016/j.biortech.2017.10.095
  • Sun Y, Li H, Li G, et al. Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresour. Technol. 2016;217:239–244. doi: 10.1016/j.biortech.2016.03.047
  • Carrasquillo AJ, Bruland GL, Mackay AA, et al. Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: influence of compound structure. Environ Sci Technol. 2008;42(20):7634–7642. doi: 10.1021/es801277y
  • Zhang CL, Qiao GL, Zhao F, et al. Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J Mol Liq. 2011;163(1):53–56. doi: 10.1016/j.molliq.2011.07.005
  • Wang CJ, Li Z, Jiang WT. Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals. Appl Clay Sci. 2011;53(4):723–728. doi: 10.1016/j.clay.2011.06.014
  • Yu F, Sun S, Han S, et al. Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem Eng J. 2016;285:588–595. doi: 10.1016/j.cej.2015.10.039
  • Nekouei S, Nekouei F, Kargarzadeh H. Synthesis of ZnO photocatalyst modified with activated carbon for a perfect degradation of ciprofloxacin and its secondary pollutants. Appl Organomet Chem. 2018;32.
  • Zhang B, Han X, Gu P, et al. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J Mol Liq. 2017;238:316–325. doi: 10.1016/j.molliq.2017.04.022
  • Luo L, Xu C, Chen Z, et al. Properties of biomass-derived biochars: combined effects of operating conditions and biomass types. Bioresour Technol. 2015;192:83–89. doi: 10.1016/j.biortech.2015.05.054
  • Li F, Feng D, Deng H, et al. Effects of biochars prepared from cassava dregs on sorption behavior of ciprofloxacin. Procedia Environ Sci. 2016;31:795–803. doi: 10.1016/j.proenv.2016.02.076
  • Li R, Wang Z, Guo J, et al. Enhanced adsorption of ciprofloxacin by KOH modified biochar derived from potato stems and leaves. Water Sci Technol. 2018;77(4):1127–1136. doi: 10.2166/wst.2017.636
  • Zeng ZW, Tan XF, Liu YG, et al. Comprehensive adsorption studies of doxycycline and ciprofloxacin antibiotics by biochars prepared at different temperatures. Front Chem. 2018;6.
  • Shang JG, Kong XR, He LL, et al. Low-cost biochar derived from herbal residue: characterization and application for ciprofloxacin adsorption. Int J Environ Sci Technol. 2016;13(10):2449–2458. doi: 10.1007/s13762-016-1075-3
  • Ren X, Zeng G, Tang L, et al. Sorption, transport and biodegradation – an insight into bioavailability of persistent organic pollutants in soil. Sci Total Environ. 2018;610–611:1154–1163. doi: 10.1016/j.scitotenv.2017.08.089
  • Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 2010;101(14):5222–5228. doi: 10.1016/j.biortech.2010.02.052
  • Chen BL, Johnson EJ, Chefetz B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: role of polarity and accessibility. Environ Sci Technol. 2005;39(16):6138–6146. doi: 10.1021/es050622q
  • Wu Q, Li Z, Hong H, et al. Adsorption and intercalation of ciprofloxacin on montmorillonite. Appl Clay Sci. 2010;50(2):204–211. doi: 10.1016/j.clay.2010.08.001
  • Vasudevan D, Bruland GL, Torrance BS, et al. pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma. 2009;151(3–4): 68–76. doi: 10.1016/j.geoderma.2009.03.007
  • Yang GX, Jiang H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 2014;48(1):396–405. doi: 10.1016/j.watres.2013.09.050
  • Ho YS. Review of second-order models for adsorption systems. J Hazard Mater. 2006;136(3):681–689. doi: 10.1016/j.jhazmat.2005.12.043
  • Arami M, Limaee NY, Mahmoodi NM. Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent. Chem Eng J. 2008;139(1):2–10. doi: 10.1016/j.cej.2007.07.060
  • Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, et al. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigm. 2008;77(1):16–23. doi: 10.1016/j.dyepig.2007.03.001
  • Nautiyal P, Subramanian KA, Dastidar MG. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternate use of waste of biodiesel industry. J Environ Manage. 2016;182:187–197. doi: 10.1016/j.jenvman.2016.07.063
  • Afzal MZ, Sun XF, Liu J, et al. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci Total Environ. 2018;639:560. doi: 10.1016/j.scitotenv.2018.05.129
  • Watson RDN, Sousa WRDN, Oliveira AR., Filho JFC, et al. Ciprofloxacin adsorption on ZnO supported on SBA-15. Water Air Soil Pollut. 2018;229(4):125. doi: 10.1007/s11270-018-3778-1
  • Wu S, Zhao X, Li Y, et al. Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem Eng J. 2013;230(1):389–395. doi: 10.1016/j.cej.2013.06.072
  • Li F, Feng D, Deng H, et al. Effects of biochars prepared from cassava dregs on sorption behavior of ciprofloxacin. Procedia Environ Sci. 2016;31:795–803. doi: 10.1016/j.proenv.2016.02.076
  • Zou W, Ke L, Bai H, et al. Enhanced cationic dyes removal from aqueous solution by oxalic acid modified rice husk. J Chem Eng Data. 2011;56(5):1882–1891. doi: 10.1021/je100893h
  • Gupta VK, Pathania D, Sharma S, et al. Preparation of bio-based porous carbon by microwave assisted phosphoric acid activation and its use for adsorption of Cr(VI). J Colloid Interface Sci. 2013; 401(4):125–132. doi: 10.1016/j.jcis.2013.03.020
  • Sag Y, Kutsal T. Determination of the biosorption heats of heavy metal ions on zoogloea ramigera and rhizopus arrhizus. Biochem Eng J. 2000; 6(2):145–151. doi: 10.1016/S1369-703X(00)00083-8
  • Ali I, Alothman ZA, Alwarthan A, et al. Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ Sci Pollut Res. 2014, 21(5):3218–3229. doi: 10.1007/s11356-013-2235-3
  • Zheng H, Wang Z, Deng X, et al. Characteristics and nutrient values of biochars produced from giant reed at different temperatures. Bioresour Technol. 2013;130(2):463–471. doi: 10.1016/j.biortech.2012.12.044
  • Tripathi PK, Liu M, Xu Z, et al. High surface area ordered mesoporous carbon for high-level removal of rhodamine B. J Mater Sci. 2013;48(22):8003–8013. doi: 10.1007/s10853-013-7612-2
  • Wang Y, Wang L, Fang G, et al. Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations. Environ Pollut. 2013;172(1): 86–93. doi: 10.1016/j.envpol.2012.08.007
  • Tran HN, You SJ, Chao HP. Fast and efficient adsorption of methylene green 5 on activated carbon prepared from new chemical activation method. J Environ Manage. 2017;188:322–336. doi: 10.1016/j.jenvman.2016.12.003
  • Hou J, Pan B, Niu X, et al. Sulfamethoxazole sorption by sediment fractions in comparison to pyrene and bisphenol A. Environ Pollut. 2010;158(9):2826–2832. doi: 10.1016/j.envpol.2010.06.023
  • Wu M, Pan B, Zhang D, et al. The sorption of organic contaminants on biochars derived from sediments with high organic carbon content. Chemosphere. 2013;90(2):782–788. doi: 10.1016/j.chemosphere.2012.09.075
  • Kyzas GZ. Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions. Materials. 2012;5(10):1826–1840. doi: 10.3390/ma5101826

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.