255
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effect of the preparation method and metal content on the synthesis of metal modified titanium oxide used for the removal of salicylic acid under UV light

, , & ORCID Icon
Pages 2073-2084 | Received 23 Sep 2018, Accepted 28 Nov 2018, Published online: 13 Dec 2018

References

  • Halling-Sorensen B, Nielsen N, et al. Occurence, fate and effects of pharmaceuticals substance in the environment - A review. Chemosphere. 1998;36:357–393. doi: 10.1016/S0045-6535(97)00354-8
  • Valcárcel Y, Alonso SG, et al. Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain. Chemosphere. 2011;82:1062–1071. doi: 10.1016/j.chemosphere.2010.10.041
  • Loos R, Locoro G, Contini S. Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS2 analysis. Water Res. 2010;44:2325–2335. doi: 10.1016/j.watres.2009.12.035
  • Ashton D, Hilton M, Thomas KV. Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ. 2004;333:167–184. doi: 10.1016/j.scitotenv.2004.04.062
  • Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int. 2009;35:803–814. doi: 10.1016/j.envint.2008.10.008
  • Nunes B, Campos JC, et al. Ecotoxicological effects of salicylic acid in the freshwater fish Salmo trutta fario: Antioxidant mechanisms and histological alterations. Environ Sci Pollut Res. 2015;22:667–678. doi: 10.1007/s11356-014-3337-2
  • Doi H, Horie T. Salicylic acid-induced hepatotoxicity triggered by oxidative stress. Chem Biol Interact. 2010;183:363–368. doi: 10.1016/j.cbi.2009.11.024
  • Huber MM, Canonica S, et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol. 2003;37:1016–1024. doi: 10.1021/es025896h
  • Kanakaraju D, Glass BD, Oelgemöller M. Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett. 2014;12:27–47. doi: 10.1007/s10311-013-0428-0
  • Vogna D, Marotta R, et al. Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res. 2004;38:414–422. doi: 10.1016/j.watres.2003.09.028
  • Pliego G, Zazo JA, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol. 2015;45:2611–2692. doi: 10.1080/10643389.2015.1025646
  • Gil A, Taoufik N, et al. Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon. Environ Technol. in press. doi: 10.1080/09593330.2018.1464066
  • Saravanan R, Sacari E, et al. Conducting PANI stimulated ZnO system for visible light photocatalytic degradation of coloured dyes. J Mol Liq. 2016;221:1029–1033. doi: 10.1016/j.molliq.2016.06.074
  • Jaramillo-Páez C, Navío JA, et al. Mixed α-Fe2O3/Bi2WO6 oxides for photoassisted hetero-Fenton degradation of methyl orange and phenol. J Photochem Photobiol A Chem. 2017;332:521–533. doi: 10.1016/j.jphotochem.2016.09.031
  • Li H, Gui K, et al. Photocatalytic, recyclable CdS nanoparticle-carbon nanotube hybrid sponges. Nano Res. 2012;5:265–271. doi: 10.1007/s12274-012-0206-5
  • Bai J, Li Y, et al. Facile preparation 3D ZnS nanospheres-reduced graphene oxide composites for enhanced photodegradation of norfloxacin. J Alloys Compd. 2017;729:809–815. doi: 10.1016/j.jallcom.2017.07.057
  • Yang Y, Zhang C, et al. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. Adv Colloid Interf Sci. 2018;254:76–93. doi: 10.1016/j.cis.2018.03.004
  • Barbosa LV, Marçal L, et al. Kaolinite-titanium oxide nanocomposites prepared via sol-gel as heterogeneous photocatalysts for dyes degradation. Catal Today. 2015;246:133–142. doi: 10.1016/j.cattod.2014.09.019
  • Hoffmann MR, Martin ST, et al. Environmental applications of semiconductor photocatalysis. Chem Rev. 1995;95:69–96. doi: 10.1021/cr00033a004
  • Rincón AG, Pulgarin C. Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl Catal B: Environ. 2006;63:222–231. doi: 10.1016/j.apcatb.2005.10.009
  • Nakata K, Fujishima A. Tio2 photocatalysis: Design and applications. J Photochem Photobiol C Photochem Rev. 2012;13:169–189. doi: 10.1016/j.jphotochemrev.2012.06.001
  • Parsons S. Advanced oxidation processes for water and wastewater treatment. London: IWA Publishing; 2004, pp. 137–140.
  • Nagy I, Balogh A. New Developments in metal oxides research. New York: Nova Science Publishers; 2013, p. 3.
  • Silva AMT, Silva CG, et al. Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catal Today. 2009;144:13–18. doi: 10.1016/j.cattod.2009.02.022
  • Mohite VS, Mahadik MA, et al. Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films. J Photochem Photobiol B Biology. 2015;142:204–211. doi: 10.1016/j.jphotobiol.2014.12.004
  • Chaudhari SM, Gawal PM, et al. Solar light-assisted photocatalytic degradation of methylene blue with Mo/TiO2: a comparison with Cr- and Ni-doped TiO2. Res Chem Intermed. 2018;44:3115–3134. doi: 10.1007/s11164-018-3296-1
  • Choi H, Antoniou MG, et al. Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol. 2007;41:7530–7535. doi: 10.1021/es0709122
  • Navío JA, Colón G, et al. Iron-doped titania semiconductor powders prepared by a sol–gel method. Part I: Synthesis and Characterization. Appl Catal A General. 1999;177:111–120.
  • Navío JA, Colón G, et al. Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Appl. Catal. B Environ. 1998;16:187–196. doi: 10.1016/S0926-3373(97)00073-8
  • Zhu J, Zheng W, et al. Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J Mol Catal A: Chem. 2004;216:35–43. doi: 10.1016/j.molcata.2004.01.008
  • Ambrus Z, Balázs N, et al. Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Appl Catal B: Environ. 2008;81:27–37. doi: 10.1016/j.apcatb.2007.11.041
  • Badawy MI, Souaya EMR, et al. Fabrication of Ag/TiO2 photocatalyst for the treatment of simulated hospital wastewater under sunlight. Environ Progress Sust Energy. 2014;33:886–894. doi: 10.1002/ep.11869
  • Gil A, García AM, et al. Effect of dopants on the structure of titanium oxide used as a photocatalyst for the removal of emergent contaminants. J Ind Eng Chem. 2017;53:183–191. doi: 10.1016/j.jiec.2017.04.024
  • Yoo SM, Rawal SB, et al. Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2 and Au@SiO2/TiO2. Appl Catal A: General. 2015;499:47–54. doi: 10.1016/j.apcata.2015.04.003
  • Garza-Campos B, Brillas E, et al. Salicylic acid degradation by advanced oxidation processes. Coupling of solar phoelectro-fenton and solar heterogeneous photocatalysis. J Hazard Mater. 2016;319:34–42. doi: 10.1016/j.jhazmat.2016.02.050
  • Arfanis MK, Adamou P, et al. Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. Chem Eng J. 2017;310:525–536. doi: 10.1016/j.cej.2016.06.098
  • Plavac B, Grcic I, et al. Kinetic study of salicylic acid photocatalytic degradation using sol-gel anatase thin film with enhanced long-term activity. Reac Kinet Mech Catal. 2017;120:385–401. doi: 10.1007/s11144-016-1090-x
  • Pecchi G, Reyes P, et al. Catalytic combustion of methane on Fe-TiO2 catalysts prepared by sol-gel method. J Sol-Gel Sci Technol. 2003;27:205–214. doi: 10.1023/A:1023758819596
  • Liu F, He H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3. Adsorption. 2010;2:16929–16936.
  • Guin D, Manorama SV, et al. Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for antibacterial outcome. J Phys Chem. C. 2007;111:13393–13397. doi: 10.1021/jp072646k
  • Zhang H, Wang G, et al. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of AgTi-C. Chem Mater. 2008;9:6543–6549. doi: 10.1021/cm801796q
  • Mogal SI, Gandhi VG, et al. Single-step synthesis of silver-doped titanium dioxide: influence of silver on structural, textural, and photocatalytic properties. Ind Eng Chem Res. 2014;53:5749–5758. doi: 10.1021/ie404230q
  • Li XS, Fryxell GE, et al. The synthesis of Ag-doped mesoporous TiO2. Micropor Mesopor Mater. 2008;111:639–642. doi: 10.1016/j.micromeso.2007.07.042
  • Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–2959. doi: 10.1021/cr0500535
  • Rao KVS, Lavedrine B, Boule P. Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates. J Photochem Photobiol A. 2003;154:189–195. doi: 10.1016/S1010-6030(02)00299-X
  • Adán C, Bahamonde A, et al. Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photacalytic degradation. Appl Catal B: Environ. 2007;72:11–17. doi: 10.1016/j.apcatb.2006.09.018
  • Thommes M, Kaneko K, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117
  • Chowdhury IH, Ghosh S, Naskar MK. Aqueous-based synthesis of mesoporous TiO2 and Ag-TiO2 nanopowders for efficient photodegradation of methylene blue. Ceram Int. 2016;42:2488–2496. doi: 10.1016/j.ceramint.2015.10.049
  • Jabłońska M, Ciptonugroho W, et al. Preparation, characterization and catalytic performance of Ag-modified mesoporous TiO2 in low-temperature selective ammonia oxidation into nitrogen and water vapour. Micropor Mesopor Mater. 2017;245:31–44. doi: 10.1016/j.micromeso.2017.02.070
  • Moulder JF, Stickle WF, et al. Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Minnesota, USA. 1992, pp. 72, 73.
  • Matsumoto Y, Katayama M, et al. Chemical trend of Fermi-level shift in transition metal-doped TiO2 films. J Ceram Soc Japan. 2010;2:993–996. doi: 10.2109/jcersj2.118.993
  • Bahadur N, Jain K, et al. Selective gas sensing response from different loading of Ag in sol-gel mesoporous titania powders. Sensors Actuators B Chem. 2011;159:112–120. doi: 10.1016/j.snb.2011.06.058
  • Abazović ND, Mirenghi L, et al. Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions. Nanoscale Res Lett. 2009;4:518–525. doi: 10.1007/s11671-009-9274-1
  • Kumar R, Rashid J, Barakat MA. Zero valent Ag deposited TiO2 for the efficient photocatalysis of methylene blue under UV-C light irradiation. Colloids Interface Sci Commun. 2015;5:1–4. doi: 10.1016/j.colcom.2015.05.001
  • Lai Y, Chen Y, et al. A facile method for synthesis of Ag/TiO2 nanostructures. Mater Lett. 2008;62:3688–3690. doi: 10.1016/j.matlet.2008.04.055
  • Dewan MAR, Zhang G, Ostrovski O. Carbothermal reduction of titania in different gas atmospheres. Metal Mater Trans B Process Metal Mater Process Sci. 2009;40:62–69. doi: 10.1007/s11663-008-9205-z
  • Zhu ZD, Hartmann M, et al. Physiochemical characterization of chromium oxides immobilized in mesoporous MeMCM-41 (Me = Al, Ti, and Zr) molecular sieves. J Phys Chem B. 2000;104:4690–4698. doi: 10.1021/jp994335i
  • Inturi SNR, Boningari T, et al. Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl Catal B Environ. 2014;144:333–342. doi: 10.1016/j.apcatb.2013.07.032
  • Prakash MG, Mahalakshmy R, et al. Studies on Ni-M (M = Cu, Ag, Au) bimetallic catalysts for selective hydrogenation of cinnamaldehyde. Catal Today. 2015;263:105–111. doi: 10.1016/j.cattod.2015.09.053
  • Wang C, Cai X, et al. Improved hydrogen production from glycerol photoreforming over sol-gel derived TiO2 coupled with metal oxides. Chem Eng J. 2017;317:522–532. doi: 10.1016/j.cej.2017.02.033
  • Markovits A, Ahdjoudj J, Minot C. A theoretical analysis of NH3 adsorption on TiO2. Surf Sci. 1996;365:649–661. doi: 10.1016/0039-6028(96)00753-4
  • Zhu J, Chen F, et al. Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A. 2006;180:196–204. doi: 10.1016/j.jphotochem.2005.10.017
  • Araña J, González-Díaz O, et al. Role of Fe3+/Fe2+ as TiO2 dopant ions in photocatalytic degradation of carboxylic acids. J Mol Catal A: Chem. 2003;197:157–171. doi: 10.1016/S1381-1169(02)00591-5
  • Zhang X, Zhou M, Lei L. Co-deposition of photocatalytic Fe doped TiO2 coatings by MOCVD. Catal Commun. 2006;7:427–431. doi: 10.1016/j.catcom.2005.12.023
  • Oh S-M, Kim S-S, et al. Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma. Thin Solid Films. 2003;455:252–258. doi: 10.1016/S0040-6090(03)00388-2
  • Narayana RL, Matheswaran M, et al. Photocatalytic decolourization of basic green dye by pure and Fe, Co doped TiO2 under daylight illumination. Desalination. 2011;269:249–253. doi: 10.1016/j.desal.2010.11.007
  • Vijayan P, Ch M, et al. Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trichlorophenol. Catal Today. 2009;141:220–224. doi: 10.1016/j.cattod.2008.04.016
  • Peng LL, Xie TF, et al. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys Chem Chem Phys. 2010;12:8033–8041. doi: 10.1039/c002460k
  • Ranjit KT, Viswanathan B. Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts. J Photochem Photobiol A: Chem. 1997;108:79–84. doi: 10.1016/S1010-6030(97)00005-1
  • Zielinska A, Kowalska E, et al. Silver-doped TiO2 prepared by microemulsion method: surface properties, bio- and photoactivity. Sep Purif Technol. 2010;72:309–318. doi: 10.1016/j.seppur.2010.03.002
  • Seery MK, George R, et al. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J Photochem Photobiol. 2007;189:258–263. doi: 10.1016/j.jphotochem.2007.02.010
  • Coleman HM, Chiang K, Amal R. Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water. Chem Eng J. 2005;113:65–72. doi: 10.1016/j.cej.2005.07.014
  • Sung-Suh HM, Choi JR, et al. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J Photochem Photobiol A. 2004;163:37–44. doi: 10.1016/S1010-6030(03)00428-3
  • Xin B, Jing L, et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface of TiO2. J Phys Chem B. 2005;109:2805–2809. doi: 10.1021/jp0469618
  • Cao Y, Tan H, et al. Preparation of Ag-doped TiO2 nanoparticles for photocatalytic degradation of acetamiprid in water. J Chem Technol Biotechnol. 2008;83:546–552. doi: 10.1002/jctb.1831
  • Gunawan C, Teoh WY, et al. Reversible antimicrobial photoswitching in nanosilver. Small. 2009;5:341–344. doi: 10.1002/smll.200801202

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.